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This paper offers some probabilistic and combinatorial insights into tree formulas for the Green function
and hitting probabilities of Markov chains on a finite state space. These tree formulas are closely related
to loop-erased random walks by Wilson’s algorithm for random spanning trees, and to mixing times by the
Markov chain tree theorem. Let mij be the mean first passage time from i to j for an irreducible chain

with finite state space S and transition matrix (pij ; i, j ∈ S). It is well known that mjj = 1/πj = �(1)/�j ,

where π is the stationary distribution for the chain, �j is the tree sum, over nn−2 trees t spanning S

with root j and edges i → k directed towards j , of the tree product
∏

i→k∈t pik , and �(1) :=∑
j∈S �j .

Chebotarev and Agaev (Linear Algebra Appl. 356 (2002) 253–274) derived further results from Kirchhoff’s
matrix tree theorem. We deduce that for i �= j , mij = �ij /�j , where �ij is the sum over the same set of

nn−2 spanning trees of the same tree product as for �j , except that in each product the factor pkj is omitted
where k = k(i, j, t) is the last state before j in the path from i to j in t. It follows that Kemeny’s constant∑

j∈S mij /mjj equals �(2)/�(1), where �(r) is the sum, over all forests f labeled by S with r directed
trees, of the product of pij over edges i → j of f. We show that these results can be derived without appeal
to the matrix tree theorem. A list of relevant literature is also reviewed.

Keywords: Cayley’s formula; Green tree formula; harmonic tree formula; Kemeny’s constant; Kirchhoff’s
matrix tree theorem; Markov chain tree theorem; mean first passage times; spanning forests/trees; Wilson’s
algorithm

1. Introduction and background

In this survey paper, we review various tree formulas of a finite Markov chain, and make con-
nections with random spanning trees and mean first passage times in the Markov chain. Most
results are known from previous work, but a few formulas and statements, e.g. the combinatorial
interpretation of Kemeny’s constant in Corollary 1.4, and the formula (5.3), appear here for the
first time. We offer a probabilistic and combinatorial approach to these results, encompassing the
closely related results of Leighton and Rivest [64,65] as well as Wilson’s algorithm [91,107] for
generation of random spanning trees.

Throughout this paper, we assume that S is a finite state space. Let mij be the mean first pas-
sage time from i to j for an irreducible Markov chain (Xn)n∈N with state space S and transition
matrix P := (pij ; i, j ∈ S). That is,

mij := EiT
+
j for i, j ∈ S,
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where T +
j := inf{n ≥ 1;Xn = j} is the hitting time of the state j ∈ S, and Ei is the expectation

relative to the Markov chain (Xn)n∈N starting at i ∈ S.
It is well known that the irreducible chain (Xn)n∈N has a unique stationary distribution (πj )j∈S

which is given by

πj = 1/mjj for all j ∈ S.

See, for example, Levin, Peres and Wilmer [67], Chapter 1, or Durrett [34], Chapter 6, for back-
ground on the theory of Markov chains.

For a directed graph g with vertex set S, write i → j ∈ g to indicate that (i, j) is a directed
edge of g and call

�P(g) :=
∏

i→j∈g

pij

the P-weight of g. Each forest f with vertex set S and edges directed towards root vertices consists
of some number r of trees ti whose vertex sets partition S into r non-empty disjoint subsets.
Observe that if a forest f consists of trees t1, . . . , tr , then f has P-weight

�P(t1, . . . , tr ) := �P(f) =
r∏

i=1

�P(ti ).

Write t → j to indicate that the edges of a tree t are all directed towards a root element j ∈ t.
The formula

mjj = 1

πj

= �(1)/�j , (1.1)

where

�j :=
∑
t→j

�P(t) and �(1) :=
∑
j∈S

�j (1.2)

follows readily from the Markov chain tree theorem [60,64,65,95,106]:

Theorem 1.1 (Markov chain tree theorem for irreducible chains [60,95,106]). Assume that
P is irreducible or equivalently, that �j > 0 for every j ∈ S. Then∑

i∈S

�ipij = �j for all j ∈ S. (1.3)

Consequently, the unique stationary distribution for the chain is πj = �j/�(1).

Section 3 recalls the short combinatorial proof of this result due to Ventcel and Freidlin [106],
where Theorem 1.1 appeared as an auxiliary lemma to study random dynamical systems. It was
also formulated by Shubert [95] and Solberg [97] in the language of graph theory, and by Kolher
and Vollmerhaus [60] in the context of biological multi-state systems. The name Markov chain
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tree theorem was first coined by Leighton and Rivest [64,65], where they extended the result to
general Markov chains which are not necessarily irreducible, see Theorem 3.1.

Later Anantharam and Tsoucas [4], Aldous [3] and Broder [17] provided probabilistic argu-
ments by lifting the Markov chain to its spanning tree counterpart. A method to generate random
spanning trees, the Aldous–Broder algorithm, was devised as a by-product of their proofs: see
Lyons and Peres [74], Section 4.4. See also Kelner and Ma̧dry [52], and Ma̧dry, Straszak and
Tarnawski [75] for development on fast algorithms to generate random spanning trees. Recently,
Biane [10], and Biane and Chapuy [11] studied the factorization of a polynomial associated to
that spanning tree-valued Markov chain. Gursoy, Kirkland, Mason and Sergeev [40] extended
the Markov chain tree theorem in the max algebra setting.

As we discuss in Section 4.2, the Markov chain tree theorem is a probabilistic expression of
Kirchhoff’s matrix tree theorem [22,58,104]. See also Seneta [94], Lemma 7.1, for a weaker form
of this theorem and its application to compute stationary distributions of countable state Markov
chains from finite truncations. Here is a version of Kirchhoff’s matrix tree theorem, essentially
due to Chaiken [22] and Chen [27]. We follow the presentation of Pokarowski [90], Lemma 1.1
and 1.2.

Theorem 1.2 (Kirchhoff’s matrix forest theorem for directed graphs [22,27,90]). Let R be
a subset of the finite state space S of a Markov chain (Xn)n∈N with transition matrix P. Let
L := I − P where I is the identity matrix on S, and let L(R) be the matrix indexed by S \ R

obtained by removing from L all the rows and columns indexed by R. Then

det L(R) = w(R) :=
∑

ROOTS(f)=R

�P(f), (1.4)

where the sum is over all forests f labeled by S whose set of roots is R. Moreover,

if det L(R) > 0, then L(R)−1 =
(

wij (R ∪ {j})
w(R)

)
i,j∈S\R

, (1.5)

where

wij

(
R ∪ {j}) :=

∑
ROOTS(f)=R∪{j},i�j

�P(f) (1.6)

is the P-weight of all forests f with roots R ∪ {j} in which the tree component containing i has
root j .

In the above theorem, the set of roots R may include single points with no incident edges.
Theodore Zhu pointed that the r.h.s. of (1.4) is the probability that the functional digraph induced
by a P-mapping (see Pitman [87]) is a forest with root set R. This implies that 0 ≤ det L(R) ≤ 1.

As observed by Pokarowski [90], Theorem 1.2, the expressions of Theorem 1.2 have the fol-
lowing probabilistic interpretations. Assume that w(R) > 0. First of all, the matrix in (1.5) is the
Green function of the Markov chain with transition matrix P killed when it hits R. From this, we
derive the tree formula for the Green function of a Markov chain or simply
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Green tree formula

Ei

TR−1∑
n=0

1(Xn = j) = L(R)−1
ij = wij (R ∪ {j})

w(R)
for i, j ∈ S \ R, (1.7)

where TR := inf{n ≥ 0;Xn ∈ R} is the entry time to the set R. Summing over j ∈ S \ R gives an
expression for the mean first passage time

EiTR =
∑

j∈S\R wij (R ∪ {j})
w(R)

. (1.8)

The Pi distribution of XTR
is given by a variant of (1.7): the tree formula for harmonic functions

of a Markov chain or simply

Harmonic tree formula

Pi (XTR
= j) = wij (R)

w(R)
for i ∈ S and j ∈ R, (1.9)

where wij (R) = wij (R ∪ {j}) is exactly as in (1.7) but now j ∈ R so R ∪ {j} = R.
It is well known that the formulas (1.7)–(1.9) all follow from characterizations of the proba-

bilistic quantities as the unique solutions of linear equations associated with the Laplacian ma-
trix L. For example, let

PHIT(R) := (
Pi (XTR

= j); i ∈ S \ R and j ∈ R
)
.

The usual first step analysis implies that

PHIT(R) = P(S\R)×R + P(S\R)×(S\R)PHIT(R), (1.10)

where PR×R′ is the restriction of P to R × R′. By letting L(R;R′) be obtained by removing
from L all the rows indexed by R and all the columns indexed by R′, the equation (1.10) is
written as

L(R)PHIT(R) = −L(R;S \ R).

Then the harmonic tree formula (1.9) is easily deduced from the fundamental expressions (1.4)
and (1.5) in Theorem 1.2.

The purpose of this work is to provide combinatorial and probabilistic meanings of these tree
formulas, without appeal to linear algebra. The formulas (1.7)–(1.9) can be proved by purely
combinatorial arguments. As an example, a combinatorial proof of the harmonic tree formula
(1.9) is given in Section 2. In addition, the Green tree formula (1.7) and the harmonic tree formula
(1.9) are closely related to Wilson’s algorithm, whose original proof [107] is combinatorial. In
fact:

• the Green tree formula (1.7) is derived from the harmonic tree formula (1.9), together with
standard theory of Markov chains;

• the harmonic tree formula (1.9) is a consequence of the success of Wilson’s algorithm;
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Figure 1. Relations between various tree theorems/formulas.

• Wilson’s algorithm follows from the Green tree formula (1.7) by a probabilistic argument
due to Lawler [62].

These arguments are presented in Sections 2 and 5. We show in Section 4.2 that even the formula
(1.4) can be deduced from the Markov chain tree theorem. See Figure 1 for the roadmap of
relations between various tree formulas.

Theorem 1.1 provides a tree formula for the mean first passage time mij for i = j . A compan-
ion result for i �= j , which is a reformulation of Chebotarev [25], Theorem 1, is stated as follows.
The proof is deferred to Section 3.

Theorem 1.3 (Markov chain tree formula for mean first passage times). Let P be a transition
matrix for an irreducible chain. For each i �= j ,

mij = �ij/�j , (1.11)

where

�ij :=
∑
t→j

�P(t)/pk(i,j,t)j , (1.12)

with k(i, j, t) being the last state before j in the path from i to j in t, and �j is defined by (1.2).

Observe that each term �P(t)/pk(i,j,t)j on the r.h.s. of (1.12) can be written as

�P(t)/pk(i,j,t)j = �P(s,u),

where (s,u) is the forest of two trees obtained by deleting the edge k(i, j, t) → j from t. So the
pair (s,u) is a two-component spanning forest. It can easily be shown that the map t 	→ (s,u) is
a bijection between trees t with t → j and two tree forests (s,u) such that i ∈ s and u → j . Thus
the formula (1.12) for �ij can be rewritten as

�ij =
∑

i∈s,u→j

�P(s,u). (1.13)
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Unaware of [25], Hunter [43] proposed an algorithm to compute mean first passage times in a
Markov chain, and derived the instances of (1.11) for a Markov chain with two, three and four
states. Note that for each i ∈ S, the number of terms in the sum �ij is the same as the number in
the sum �j , namely |S||S|−2. Also, each term �P(t)/pk(i,j,t)j is larger than the corresponding
term �P(t) in �j . To illustrate, for |S| = 2 states {0,1}

m10 = 1/p10.

For |S| = 3 states {0,1,2}
m10 = (p12 + p21 + p20)/(p12p20 + p21p10 + p10p20).

It was first observed by Kemeny and Snell [53], Corollary 4.3.6, that the quantity

K :=
∑
j∈S

mij /mjj (1.14)

is a constant, not depending on i. This constant associated with an irreducible Markov chain is
known as Kemeny’s constant. Since its discovery, a number of interpretations have been provided.
For example, Levene and Loizou [66] interpreted Kemeny’s constant as the expected distance
between two typical vertices in a weighted directed graph. Lovasz and Winkler [69] rediscovered
this result in their random target lemma, which was further developed in Aldous and Fill [2],
Chapter 2.

Kemeny’s constant K is closely related to the Laplacian matrix L, and the fundamental matrix
Z := (L + �)−1 where � is the matrix each row of which is the stationary distribution π , by the
following identities:

K = Tr Z;

K = Tr
[
L(i)−1]+ L#

ii

πi

,

where L# is the group inverse of the Laplacian matrix L. See also Doyle [33], Hunter [42],
Gustafson and Hunter [41], and Catral, Kirkland, Neumann and Sze [20] for linear algebra ap-
proaches to Kemeny’s constant K . The following result is a consequence of the formula (1.13)
in the proof of Theorem 1.3.

Corollary 1.4 (Combinatorial interpretation of Kemeny’s constant). For r ∈N, let

�(r) :=
∑

t1,...,tr

�P(t1, . . . , tr ),

where the sum is over all directed forests of r trees t1, . . . , tr spanning S. Then

K = 1 + �(2)/�(1). (1.15)
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Hunter [42] indicated the instances of (1.15) for a Markov chain with two and three states, but
with a notation which conceals the generalization to n states. So this combinatorial interpretation
of K may be new. We leave open the interpretation of �(r) for r ≥ 3.

Organization of the paper:

• In Section 2, we provide a combinatorial proof of the harmonic tree formula (1.9), from
which we derive the Green tree formula (1.7). We also prove Cayley’s formula for enumer-
ating spanning forests by means of the Green tree formula (1.7).

• In Section 3, we focus on the Markov chain tree theorems. We present a short proof of
Theorem 1.1 and a generalization. We also provide two proofs for Theorem 1.3, one based
on the formula (1.8) and the other relying on Theorem 1.1.

• In Section 4, we review Kirchhoff’s matrix tree theorems. We show how to translate this
graph theoretical result into the Markov chain setting. In particular, we show that the Markov
chain tree theorem is derived from a version of Kirchhoff’s matrix tree theorem.

• In Section 5, we explore the relation between Wilson’s algorithm and various tree formulas.
We also present Kassel and Kenyon’s generalized Wilson’s algorithm, from which we derive
some cycle-rooted tree formulas.

• In Section 6, some additional notes and further references are provided.

2. Tree formulas and Cayley’s formula

In this section, we provide combinatorial and probabilistic proofs for the Green tree formula (1.7)
and the harmonic tree formula (1.9). As an application, we give a proof of Cayley’s well-known
formula [21] for enumerating spanning forests in a complete graph.

To begin with, we make a basic connection between results formulated for an irreducible
Markov chain with state space S, and results formulated for killing of a possibly reducible
Markov chain when it first hits an arbitrary subset R of its state space.

Lemma 2.1. Let P be a possibly reducible transition matrix indexed by a finite set S. For R a
non-empty subset of S, let

w(R) :=
∑

ROOTS(f)=R

�P(f)

as in (1.4). The following conditions are equivalent:

(1) w(R) > 0.
(2) There exists at least one forest f of trees spanning S with ROOTS(f) = R such that the

tree product �P(f) > 0, which is to say, every edge i → j of f has pij > 0.
(3) For every i ∈ S \ R there exists a path t from i to some r ∈ R such that �P(t) > 0.
(4) L(R) := (I − P)(S\R)×(S\R) is invertible with inverse L(R)−1 = ∑∞

n=0 Pn
(S\R)×(S\R),

where P(S\R)×(S\R) is the restriction of P to (S \ R) × (S \ R).
(5) det L(R) �= 0.
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Proof. Note that (1) ⇔ (2) ⇒ (3) is obvious. (3) ⇒ (2) is obtained by recursively selecting a
path until it either joins an existing path leading to some r ∈ R, or reaches a different r ′ ∈ R.
The procedure terminates when all of S \ R are exhausted. This point is reinforced by Wilson’s
algorithm, see Section 5. As for (3) ⇔ (4), this is textbook theory of absorbing Markov chains,
see Kemeny and Snell [53], Theorem 3.2.1, or Seneta [94], Theorem 4.3. Finally, (4) ⇔ (5) is
elementary linear algebra. �

By Kirchhoff’s matrix forest theorem, Theorem 1.2, we know that w(R) = det L(R), which
is much more informative than the implication (1) ⇔ (5) of Lemma 2.1. But we are now trying
to work around the matrix tree theorem, to increase our combinatorial and probabilistic under-
standing of its equivalence. Now we present a combinatorial proof of the harmonic tree formula.

Proof of the harmonic tree formula (1.9). Assume that w(R) > 0. By Lemma 2.1, for every
i ∈ S, there exists a path t from i to some r ∈ R such that �P(t) > 0. By finiteness of S and
geometric bounds, we have Pi (TR < ∞) = 1 for all i ∈ S. This condition implies that for each
r ∈ R, the function

hr(i) := Pi (XTR
= r)

is the unique function h such that h(i) = (Ph)(i) for all i ∈ S \ R with the boundary condition
h(i) = 1(i = r) for i ∈ R, see, for example, Lyons and Peres [74], Section 2.1. Considering

h(i) := wir(R)

w(R)
,

it is obvious that this h satisfies the boundary condition, so it only remains to check that it is P-
harmonic on S \ R. After canceling the common factor of w(R) and putting all terms involving
wir on the left-hand side, the harmonic equation for wir(R), i ∈ S \ R becomes(∑

j �=i

pij

)
wir(R) =

∑
k �=i

pikwkr(R).

The equality of these two expressions is established by matching the terms appearing in the sums
on the two sides. Specifically, for each fixed i ∈ S \ R and r ∈ R there is a matching

pij�(f) = pik�
(
f′
)
, (2.1)

where on the l.h.s.: j �= i, i
f� r and on the r.h.s.: k �= i, k

f′� r with both j and k ranging over

all states in S, but always i ∈ S \ R and r ∈ R. If on the l.h.s. we have j
f� r , then set k = j and

f′ = f. Then the r.h.s. conditions are met by (k, f′), and (2.1) holds trivially. So we are reduced to

matching, for each fixed choice of i ∈ S \R and r �= r ′ ∈ R, on the l.h.s.: j �= i, i
f� r, j

f� r ′ �= r

and on the r.h.s.: k �= i, k
f′� r, i

f′� r ′ �= r .
Given (j, f) on the l.h.s., let i → k be the edge out of i in f. Create f′ by deleting this edge

and replacing it with i → j . Then it is easily seen that (k, f′) is as required on the r.h.s., and it is
clear that (2.1) holds. Inversely, given (k, f′) as on the r.h.s., let i → j be the edge out of i in f′.
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Figure 2. Bijection between the l.h.s.: i � r, j � r ′ and the r.h.s.: k � r, i � r ′.

Pop this edge and replace it with i → k to recover (j, f). See Figure 2 for an illustration of the
bijection. �

Next we make use of the harmonic tree formula to derive the Green tree formula. To this end,
we need the following tree identity.

Lemma 2.2. For j ∈ S \ R,

w
(
R ∪ {j})= w(R) +

∑
k∈S\R

pjkwkj

(
R ∪ {j}).

Proof. Observe that

w
(
R ∪ {j})=

∑
ROOTS(f)=R,t→j

�P(f)�P(t),

where the sum is over all forests f whose set of roots is R, and all trees t are directed towards j .
Now for each choice of (f, t), we can split the product into two parts as

�P(f)�P(t) =
∑
k /∈t

�P(f)�P(t)pjk +
∑
k∈t

�P(f)�P(t)pjk.

The sum of the first part is evidently w(R), with �P(f)�P(t)pjk comprising those terms in w(R)

indexed by forests f′ where the subtrees of f′ rooted at j equals t and that subtree is attached to
the remaining forest f at vertex k ∈ f. While the sum of the second part is∑

ROOTS(f)=R,t→j

∑
k∈{t}

�P(f)�P(t)pjk

=
∑

k∈S\R
pjk

[ ∑
ROOTS(f)=R,k∈t→j

�P(f)�P(t)
]

=
∑

k∈S\R
pjkwkj

(
R ∪ {j}),

from which the desired result follows. �
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Derivation of the Green tree formula (1.7) from the harmonic tree formula (1.9). It follows
from standard theory of Markov chains that for all i, j ∈ S \ R,

Ei

TR−1∑
n=0

1(Xn = j) = Pi (XTR∪{j } = j) ×Ej

TR−1∑
n=0

1(Xn = j)

(2.2)

= wij (R ∪ {j})
w(R ∪ {j}) ×Ej

TR−1∑
n=0

1(Xn = j),

where the last equality uses the harmonic tree formula (1.9) for j ∈ R ∪ {j}. In addition,

Ej

TR−1∑
n=0

1(Xn = j) = 1 +
∑

k∈S\R
pjk ×Ek

TR−1∑
n=0

1(Xn = j)

(2.2)= 1 +
∑

k∈S\R pjkwkj (R ∪ {j})
w(R ∪ {j}) ×Ej

TR−1∑
n=0

1(Xn = j),

which together with Lemma 2.2 implies that

Ej

TR−1∑
n=0

1(Xn = j) = w(R ∪ {j})
w(R ∪ {j}) −∑

k∈S\R pjkwkj (R ∪ {j})
(2.3)

= w(R ∪ {j})
w(R)

.

Injecting (2.3) into (2.2), we obtain the Green tree formula (1.7).

We illustrate the Green tree formula (1.7), by a derivation of Cayley’s formula for the number
of forests with a given set of roots. Cayley’s formula is well known to be a direct consequence
of Kirchhoff’s matrix forest theorem, see, for example, Pitman [86], Corollary 2. The Green tree
formula, while weaker than Kirchhoff’s matrix forest theorem, still carries enough enumerative
information about trees and forests to imply Cayley’s formula.

Corollary 2.3 (Cayley’s formula [21]). Let 1 ≤ k ≤ n. Then∣∣{forests labeled by [n] with root set [k]}∣∣= knn−k−1. (2.4)

Proof. Consider the Markov chain generated by an i.i.d. sequence of uniform random choices
from S := [n] and run the chain until the first time it hits a state i ∈ R := [k]. The number of
steps required is a geometric random variable Tn,k with mean n/k. In addition, the expectation
of the intervening number of steps with mean (n − k)/k is equidistributed over the n − k other
states. Thus, the expected number of visits to each of these other states prior to Tn,k is 1/k.

Let Pn,k be the (n − k) × (n − k) substochastic transition matrix with all entries equal to
1/n. It follows immediately from the above observation that the corresponding Green matrix
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(I − Pn,k)
−1 has entries 1 + 1/k along the diagonal, all other entries being identically equal to

1/k. To illustrate, for n = 6 and k = 2,

(I − P6,2)
−1 =

⎛⎜⎜⎝
5/6 −1/6 −1/6 −1/6

−1/6 5/6 −1/6 −1/6
−1/6 −1/6 5/6 −1/6
−1/6 −1/6 −1/6 5/6

⎞⎟⎟⎠
−1

=

⎛⎜⎜⎝
3/2 1/2 1/2 1/2
1/2 3/2 1/2 1/2
1/2 1/2 3/2 1/2
1/2 1/2 1/2 3/2

⎞⎟⎟⎠ .

Let c(n, k) be the number of forests labeled by [n] with root set [k]. Then for k + 1 ≤ i �= j ≤ n,
the ratio of forest sums in the Green tree formula (1.7) is readily evaluated to give

1

k
= c(n, k + 1)(k + 1)−1n−(n−k−1)

c(n, k)n−(n−k)
, (2.5)

where the denominator sums the c(n, k) identical forest products n−(n−k) from the k-tree forests
with root set [k], while the numerator sums the c(n, k + 1)/(k + 1) identical forest products
n−(n−k−1) from all the (k + 1)-tree forest products of trees with root set {j } ∪ [k] in which i is
contained in the tree with root j . Here the division by (k + 1) accounts for the fact that each tree
has exactly one of k + 1 distinct roots. The formula (2.5) simplifies to

c(n, k + 1) = (k + 1)c(n, k)

kn
for 1 ≤ k ≤ n − 2. (2.6)

Since the enumerations c(n,n) = 1 and c(n,n − 1) = n − 1 are obvious, Cayley’s formula (2.4)
for c(n, k) follows immediately from (2.6). �

We also refer to Lyons and Peres [74], Corollary 4.5, for a proof of Cayley’s formula by
Wilson’s algorithm, and to Pitman [88], Section 2, for that using the forest volume formula.
Lyons and Peres’ proof is similar in spirit to ours, and the relation between Wilson’s algorithm
and various tree formulas will be discussed in Section 5.

3. Markov chain tree theorems

In this section, we deal with the Markov chain tree theorems. To begin with, we present a three-
sentence proof of Theorem 1.1, due to Ventcel and Freidlin [106], Lemma 7.1. They studied
perturbed diffusion processes by Markov chain approximations, where Theorem 1.1 was used to
estimate the first hitting time of the Markov chain to a set.

Proof of Theorem 1.1. Multiply the r.h.s. of (1.3) by
∑

k pjk = 1 and expand the tree sums �i

and �j to include the extra transition factors:

l.h.s. =
∑
i∈S

∑
t→i

pij�
P(t) and r.h.s. =

∑
k∈S

∑
t→j

�P(t)pjk.
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Figure 3. A cycle-rooted spanning tree whose cycle includes j .

Then both sides equal the sum of �P(g) over all directed graphs g which span S and contain
exactly one cycle including j , see Figure 3. Such graphs g are called cycle-rooted spanning trees
(CRST), see Section 5 for definition.

The l.h.s. sum is split up according to the state i that precedes j , whereas the r.h.s. sum is split
up according to the state k that follows j . �

Now let us consider a Markov chain (Xn)n∈N with transition matrix P, which is not necessarily
irreducible. Elementary considerations show that the state space S is uniquely decomposed into
a list of disjoint recurrent classes C1, . . . ,Ck , and the transient states, see, for example, Feller
[36], Chapter XV.6.

The general version of the Markov chain tree theorem is attributed to Leighton and Rivest
[64,65]. Here we provide a probabilistic argument, see also Anantharam and Tsoucas [4] for an
alternative proof.

Theorem 3.1 (Markov chain tree theorem [64,65]). Assume that P is a transition matrix with
disjoint recurrent classes C1, . . . ,Ck . Let F be a random forest picked from all forests f consist-
ing of k trees with one tree rooted in each Ci , and P(F = f) = �P(f)/W where W is the total
weight of all such forests. Then

lim
N→∞

1

N

N∑
n=1

pn
ij = P(i

F� j), (3.1)

where the right-hand side is the probability that the tree of F containing i has root vertex j .

Proof. If j is a transient state, then both sides of (3.1) equal to zero. Now let C ∈ {C1, . . . ,Ck}
be the recurrent class containing j . According to Durrett [34], Theorem 6.6.1,

lim
N→∞

1

N

N∑
n=1

pn
ij = Pi (TC < ∞)πC

j ,

where TC is the entry time to C and πC
j is the stationary distribution in C. The result boils down

to two special cases:
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(1) the ergodic case when P is irreducible and all trees in F have a single root, which is
distributed according to the unique stationary distribution of P regardless of i;

(2) the completely absorbing case when there is a set R of absorbing states with w(R) > 0,
and F is a forest whose set of roots is R.

In case (1), the conclusion reduces to Theorem 1.1, and in case (2) to the harmonic tree formula
(1.9). In the general case, every possible forest f consists of:

• some selection of roots R, with |R| = k and one root ri in each Ci ,
• for each i a subtree ti spanning Ci with root ri ,
• a collection of subtrees uc rooted at c ∈⋃k

i=1 Ci .

Then an obvious factorization

�P(f) =
(

k∏
i=1

�P(ti )

) ∏
c∈⋃k

i=1 Ci

�P(uc),

shows that F decomposes into (k + 1) independent components, k subtrees spanning the Ci ,
1 ≤ i ≤ k and a forest with roots

⋃k
i=1 Ci , so it is easy to deduce the conclusion from the two

special cases. �

The rest of this section concerns the Markov chain tree formula for mean first passage times,
Theorem 1.3. First, we provide a simple proof of Theorem 1.3 by using the formula (1.8), which
is derived from the Green tree formula (1.7).

Proof of Theorem 1.3. By setting R = {j} in the formula (1.8), we get:

mij =
∑

k �=j wik({j, k})
w{j} .

By definition, w({j}) = �j , and

wik

({j, k})=
∑

i∈s→k,u→j

�P(s,u).

As a consequence, ∑
k �=j

wik

({j, k})=
∑

i∈s,u→j

�P(s,u). (3.2)

Combining (3.2) and (1.13) yields the desired result. �

As observed by Pokarowski [90], the Green tree formula (1.7) is a consequence of Kirchhoff’s
matrix forest theorem, Theorem 1.2. Now we give a combinatorial proof of Theorem 1.3, without
appeal to the matrix tree theorem.
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Alternative proof of Theorem 1.3. As seen in the beginning of this section, the formula (1.1)
can be proved without using Kirchhoff’s matrix forest theorem. We now fix i, j ∈ S, and apply
formula (1.1) to the modified chain P̃ := (p̃ij ; i, j ∈ S) defined by

p̃j i = 1, p̃jk = 0 for k �= i and p̃lk = plk for l �= j.

So P̃ has a recurrent class S̃ containing {i, j}, and it is possible that S̃ �= S. For k ∈ S̃, let �̃k

be the tree sum, over trees t̃ → k spanning S̃, of the tree product

�P̃(̃t) =
∏

i′→j ′∈̃t

p̃i′j ′ .

By construction, m̃jj = 1 + mij . Thus,

mij = m̃jj − 1 =
∑

k �=j �̃k

�̃j

. (3.3)

Observe that the map t 	→ (̃t, f) is a bijection between trees t with t → j and tree forest pairs
(̃t, f) such that t̃ → j spans S̃ and ROOTS(f) = S̃. This leads to a unique factorization �P(t) =
�P̃(̃t)�P(f) for each t → j . By summing over all t → j , we get

�j = �̃jw(S̃), (3.4)

where w(S̃) is defined as in (1.4).
Further by cutting the edge k(i, j, t) → j from t, the map t̃ 	→ (s,u) is a bijection between

trees t̃ → j spanning S̃ and two tree forests (s,u) such that i ∈ s and u → j . Attaching u to s by
j → i, we define a tree t̃′ → k(i, j, t) spanning S̃. Since p̃j i = 1, we have

�P̃(̃t)/pk(i,j,t)j = �P̃(̃t′).
Hence, �P(t)/pk(i,j,t)j = �P̃(̃t′)�P(f) for each t → j . Note that the map t̃ 	→ t̃′ is a bijection
between trees t̃ → j and those t̃′ → k �= j . Again by summing over all t → j , we get

�ij =
∑
k �=j

�̃kw(S̃). (3.5)

By injecting (3.4) and (3.5) into (3.3), we obtain the formula (1.11). �

Chung’s formula and tree identities. Now by setting R = {k} in the Green tree formula (1.7),
we get:

Ei

Tk−1∑
n=0

1(Xn = j) = wij ({k, j})
�k

for i, j �= k. (3.6)
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According to Chung [28], Theorem I.11.3, and Pitman [89], Example 4.11, for a positive recur-
rent chain,

Ei

Tk−1∑
n=0

1(Xn = j) = mik + mkj − mij 1(i �= j)

mjj

for i, j �= k.

Further by Theorem 1.3, we have:

Ei

Tk−1∑
n=0

1(Xn = j) = �ik�j + �kj�k − �ij�k1(i �= j)

�k�(1)
for i, j �= k. (3.7)

By identifying (3.6) and (3.7), we obtain the following tree identities:

wii

({k, i})�(1) = �ik�i + �ki�k for i �= k, (3.8)

wij

({k, j})�(1) + �ij�k = �ik�j + �kj�k for i �= j and i, j �= k. (3.9)

It seems that these identities are non-trivial, and there is no simple bijective proof. So we leave
the interpretation open for readers.

4. Kirchhoff’s matrix tree theorems

We begin with the discussion of Kirchhoff–Tutte’s matrix tree theorem for directed graphs.
Let G := (V ,

−→
E ) be a directed finite graph with no multiple edges nor self loops, where−→

E ⊂ {(i, j); i �= j ∈ V }. Equip each directed edge (i, j) ∈ −→
E with a weight c(i, j) ≥ 0. The

graph Laplacian LG,c = (l
G,c
ij ; i, j ∈ V ) is defined by: for i, j ∈ V ,

l
G,c
ij :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
k �=i

c(i, k) if i = j,

−c(i, j) if (i, j) ∈ −→
E ,

0 otherwise.

Observe that the graph Laplacian of a directed graph is not necessarily symmetric. If we take
c(i, j) = 1 for all (i, j) ∈ −→

E , then LG,1 = DG − AG, where DG is the outer-degree matrix of G,
and AG is the adjacency matrix of G.

The following result, which we call Kirchhoff–Chaiken–Chen’s matrix forest theorem for di-
rected graphs, is due to Chaiken and Kleitman [23], Chaiken [22], and Chen [27].

Theorem 4.1 (Kirchhoff–Chaiken–Chen’s matrix forest theorem for directed graphs [22,
23,27]). Let R be a non-empty subset of V . Let LG,c(R) be the submatrix of LG,c obtained by
removing all rows and columns indexed by R. Then

det LG,c(R) =
∑

ROOTS(f)=R

�c(f), (4.1)
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where �c(f) :=∏
(i,j)∈f c(i, j), and the sum is over all forests whose set of roots is R.

For further discussion on forest matrices, we refer to Chebotarev and Agaev [26] and refer-
ences therein.

The case R = {i}, which we call Kirchhoff–Tutte’s matrix tree theorem for directed graphs,
was first proved by Tutte [104] based on the inductive argument of Brooks, Smith, Stone and
Tutte [18]. It was independently discovered by Bott and Mayberry [16]. In particular,

det LG,1(i) = ∣∣{spanning trees rooted at i ∈ V }∣∣.
Orlin [83] made use of the inclusion-exclusion principle to prove this result. Zeilberger [109]
gave a combinatorial proof by using cancellation arguments. For historical notes, we refer to
Moon [82], Section 5.5, Tutte [105], Section VI.4, and Stanley [98], Section 5.6. There is a
generalization of matrix tree theorems from graphs to simplicial complexes, initiated by Kalai
[45] and developed by Duval, Klivans and Martin [35]. Lyons [72] extended the matrix tree
theorem to CW-complexes. Minoux [81] studied the matrix tree theorem in the semiring setting.
Masbaum and Vaintrob [79], and Abdesselam [1] considered Pfaffian tree theorems. Recently,
de Tilière [32] discovered a Pfaffian half-tree theorem.

It is well known that a weighted directed graph (G, c) defines a Markov chain on the state
S := V . In the sequel, let |S| = n. The transition matrix P := (pij ; i, j ∈ S) is given as

pij := − l
G,c
ij

l
G,c
ii

= c(i, j)∑
k �=i c(i, k)

for i �= j ∈ S and pii = 0 for i ∈ S. (4.2)

Hence the transition matrix P and the graph Laplacian LG,c are related by

LG,c = DG,c(I − P), (4.3)

where DG,c is the diagonal matrix whose (i, i)-entry equals l
G,c
ii . Now we provide a proof of

Theorem 1.2 (1.4) by using Theorem 4.1.

Derivation of Theorem 1.2 (1.4) from Theorem 4.1. The proof boils down to two subcases.
Case 1. For all i ∈ S, pii = 0. By the relation (4.3), the formula (1.4) is an equivalent formu-

lation of (4.1) in the context of Markov chains.
Case 2. There exists i ∈ S such that pii > 0. Let A := {i ∈ S;pii = 1} be the set of absorbing

states, and define a new chain X̃ whose transition matrix P̃ = (p̃ij ; i, j ∈ S) is given by p̃ii = 1
if i ∈ A and

p̃ij := pij

1 − pii

for i �= j and p̃ii = 0, if i /∈ A.

Note that the restriction of the transition matrix P̃ to (S \ A) × (S \ A) has all zeros on the
diagonal. If A∩ (S \ R) �=∅, then both sides of (1.4) equal to zero. Consider the case of A⊂ R.
Let L̃ := I − P̃, then (1.4) holds for (L̃, P̃). Multiplying both sides by

∏
j /∈R(1 −pjj ) and noting

that det L(R) = det L̃(R)
∏

j /∈R(1 − pjj ), we obtain (1.4).

In the rest of this section, we present several applications of the matrix forest theorem.



Tree formulas and Kemeny’s constant 17

4.1. A probabilistic expression for �(1)

Recall the definition of �(1) from (1.2). We present a result of Runge and Sachs [92] and Lyons
[71], which expresses �(1) as an infinite series whose terms have a probabilistic meaning.

By definition,

det(I − P − tI) = det(L − tI) for all t ∈R. (4.4)

Let us look at the coefficient of t on both sides of (4.4). Let adj(·) be the adjugate matrix. The
coefficient of t in det(L − tI) is given by

−Tr
[
adj(L)

]= −
n∑

i=1

det L(i)
(∗)= −

n∑
i=1

∑
t→i

�P(t) = −�(1),

where (∗) is obtained by applying Theorem 1.2 with R = {i}.
Assume that P is irreducible and aperiodic. Let 1 = λ0, λ1, . . . , λn−1 be eigenvalues of the

transition matrix P. It follows from Perron–Frobenius theory that |λi | < 1 for 1 ≤ i ≤ n − 1. See
Meyer [80], Chapter 8, for development. Then the coefficient of t in det(I − P − tI) is

−
n−1∏
i=1

(1 − λi) = − exp

(
n−1∑
i=1

log(1 − λi)

)
= − exp

(
−

n−1∑
i=1

∑
k≥1

λk
i

k

)

= − exp

(
−
∑
k≥1

1

k

(
Tr Pk − 1

))= − exp

[
−
∑
k≥1

1

k

(
n∑

i=1

p
(k)
ii − 1

)]
,

where p
(k)
ii is the probability that the Markov chain starting at i returns to i after k steps. There-

fore,

�(1) = exp

[
−
∑
k≥1

1

k

(
n∑

i=1

p
(k)
ii − 1

)]
. (4.5)

4.2. Matrix tree theorems and Markov chain tree theorems

We prove that the Markov chain tree theorem for irreducible chains, Theorem 1.1, and Kirchhoff–
Tutte’s matrix tree theorem, Theorem 1.2 (1.4) for R = {i} can be derived from each other. The
argument is borrowed from Leighton and Rivest [65], and Sahi [93].

Derivation of Theorem 1.1 from Theorem 1.2 (1.4). Observe that for an irreducible chain with
Laplacian matrix L := I − P, the stationary distribution π = (πi)i∈S is uniquely determined by

πL(1, i) = Ei for i ∈ S,
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where L(1, i) is the matrix obtained from L by replacing the ith column by 1 := (1, . . . ,1)T , and
Ei is the vector with a one in the ith column and zeros elsewhere. By Cramér’s rule,

πi = det L(i)

det L(1, i)
= det L(i)∑

j∈S det L(j)
for i ∈ S.

Let (�i)i∈S and �(1) be defined as in (1.2). According to the formula (1.4) for R = {i},

πi = �i

�(1)
for i ∈ S,

which leads to Theorem 1.1.

Derivation of Theorem 1.2 (1.4) for R = {i} from Theorem 1.1. By Theorem 1.1,

�i = det L(i)∑
j∈S det L(j)

�(1) for i ∈ S.

Observe that det L(i),
∑

j∈S det L(j), �i and �(1) are all homogeneous polynomials of degree
n−1 in variables (pjk; j �= k ∈ S) with integer coefficients. Now we prove the following lemma.

Lemma 4.2. For each i ∈ S, the polynomial det L(i) is irreducible.

Proof. Identify the set S with {0,1, . . . , n − 1}. By symmetry, it suffices to consider det L(0).
Note that for 1 ≤ i, j ≤ n − 1,

L(0)ij =
⎧⎨⎩

−pij if i �= j,∑
k �=i

pik if i = j.

It is easy to check that (pij ;1 ≤ i ≤ n − 1,0 ≤ j ≤ n − 1, i �= j) 	→ (L(0)ij ;1 ≤ i, j ≤ n − 1)

is an invertible linear map. According to Bocher [13], Section 61, det L(0) is irreducible as a
polynomial in the matrix entries. �

By Lemma 4.2, det L(i) and
∑

j∈S det L(j) do not have any common factor, since the terms
of det L(i) are strictly included in the sum

∑
j∈S det L(j). It follows that

�i = λdet L(i) for some rational λ.

By considering the coefficient of
∏

k �=i pki on both sides, we obtain λ = 1 as desired.
By decomposing the state space S into recurrent classes and transient sets, a similar argument

as above shows that the Markov chain tree theorem, Theorem 3.1, and Kirchhoff’s matrix forest
theorem, Theorem 1.2 can be derived from each other.
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4.3. Matrix tree theorem for undirected graphs

Consider the case where c(i, j) = c(j, i) for i �= j ∈ V , so that the graph Laplacian LG,c is
symmetric positive semi-definite. The following result, known as Kirchhoff’s matrix tree theorem
for undirected graphs [58,59], is easily derived from Theorem 4.1.

Theorem 4.3 (Kirchhoff’s matrix tree theorem for undirected graphs [58]). For i, j ∈ V , let
LG,c(i; j) be the submatrix of LG,c obtained by removing the ith row and j th column. Then

det LG,c(i; j) =
∑

t∈TREES

�c(t), (4.6)

where �c(t) := ∏
{i′,j ′}∈t c(i

′, j ′), and the sum is over all unrooted spanning trees in G. In
particular,

det LG,1(i; j) = ∣∣{unrooted spanning trees in G}∣∣.
We refer to Moon [82], Section 5.3, in which Theorem 4.3 was proved by using the Cauchy–

Binet formula. The most classical application of Theorem 4.3 is to count unrooted spanning trees
in the complete graph Kn, known as Cayley’s formula [21]. See also Pak and Postnikov [84],
Section 3, for enumerating unrooted spanning trees by using the property of reciprocity for some
tree-sum degree polynomial.

Theorem 4.3 states that every minor of the graph Laplacian LG,c is identical to the tree sum-
product as in (4.6). Kelmans and Chelnikov [51] expressed these minors in terms of the eigen-
values 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 of LG,c:

det LG,c(i; j) = 1

n

n−1∏
k=1

λk. (4.7)

It was observed by Biggs [12], Corollary 6.5, that (4.7) can be derived from Temperley’s identity
[100]: det LG,c(i; j) = 1

n2 det(LG,c + J ), where J is n × n matrix with all entries equal to 1.
Recently, Kozdron, Richards and Stroock [61], Theorem 2.2, observed that the formula (4.7) is
a direct consequence of Crámer’s formula and the Jordan–Chevalley decomposition, see also
Stroock [99], Section 3.2.2.

Here we give a lesser known example of counting spanning trees in the complete prism. Recall
that the Cartesian product G�H of graphs G and H is the graph such that V (G�H) = V (G) ×
V (H), and (uG,uH ) is adjacent with (vG, vH ) if and only if uG = vG and uH is adjacent to vH

in H , or uH = vH and uG is adjacent to vG in G.

Example 4.4 (Boesch and Prodinger [14]). We aim at counting spanning trees in the complete
prism Kn�Cm, that is the Cartesian product of the complete graph Kn and the circulant graph
Cm whose adjacency matrix is a permutation matrix. The graph Laplacian of Kn�Cm is written
as

LKn�Cm,1 = DKn�Cm − AKn�Cm = (n + 1)Inm − AKn ⊕ ACm,
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where DG (resp. AG) is the degree matrix (resp. the adjacency matrix) of G, and ⊕ is the Kro-
necker sum of two matrices: if A is m × m matrix and B is n × n matrix, then

A ⊕ B := A ⊗ In + Im ⊗ B, where ⊗ is the usual tensor product of two matrices.

Note that AKn has eigenvalues −1 with multiplicity n−1, and n−1 with multiplicity 1, and ACm

has eigenvalues 2 cos( 2kπ
m

) for 0 ≤ k ≤ m − 1. It is known that the eigenvalues of the Kronecker
sum of two matrices are all possible sums of eigenvalues of the individual matrices, see Bellman
[6], Chapter 12, Section 11. From Theorem 4.3 and (4.7), we deduce that∣∣{unrooted spanning trees in Kn�Cm}∣∣

= 1

nm

(
m−1∏
k=0

[
m + 2 − 2 cos

(
2kπ

m

)])n−1 m−1∏
k=1

[
2 − 2 cos

(
2kπ

m

)]

= mnn−2
[
Um−1

(√
n + 4

4

)]2n−2

,

where Um−1 is the Chebyshev polynomial of the second kind; that is

Um−1(x) := − 1

2
√

x2 − 1

[(
x +

√
x2 − 1

)m − (
x −

√
x2 − 1

)m]
.

See Boesch and Prodinger [14], Benjamin and Yerger [7], and Zhang, Yong and Golin [110] for
enumerating spanning trees in a wide class of graphs.

5. Wilson’s algorithm and tree formulas

In this section, we explore the connections between Wilson’s algorithm, the Green tree formula
(1.7) and the harmonic tree formula (1.9). Wilson’s algorithm [107] was originally devised to
generate a random tree whose probability distribution over trees t rooted at a fixed r ∈ S is pro-
portional to the tree product �(t). The constant of normalization is w({r}) as in (1.4) for the case
R = {r}. See, for example, Lyons and Peres [74], Section 4.1, and Grimmett [39], Section 2.1,
for further development.

The algorithm has extensions in several directions. Marchal [77,78] provided a similar proce-
dure to construct random Hamiltonian cycles. Gorodezky and Pak [38] gave a version of Wilson’s
algorithm in the hypergraph setting. Kassel and Kenyon [47] generalized Wilson’s algorithm for
sampling cycle-rooted spanning forests, which will be discussed later.

For any finite path (x0, x1, . . . , xl) in a directed graph, its loop erasure (u0, u1, . . . , um) is
defined by erasing cycles in chronological order. More precisely, set u0 := x0. If xl = x0, we set
m = 0 and terminate; otherwise, let u1 be the first vertex after the last visit to x0, i.e. u1 := xi+1,
where i := max{j ;xj = x0}. If xl = u1, then we set m = 1 and terminate; otherwise, let u2 be
the first vertex after the last visit to u1, and so on.

In the sequel, (Xn)n∈N is a Markov chain with transition matrix P := {pij ; i, j ∈ S}. Now we
describe Wilson’s original cycle-popping algorithm.
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Wilson’s algorithm for generating a random spanning tree rooted at r : Start a copy of
(Xn)n∈N at any arbitrary state i, run the chain until it hits r , and then perform a loop erasure
operation to obtain a path from i to r . This path will then be the unique path in the ultimately
generated tree produced by following stages of the algorithm, in which another copy of (Xn)n∈N
is started at any arbitrary state not in this path, until it hits the path, and so on, growing an
increasing family of trees which eventually span all of S \ {r}, when the algorithm terminates.

Next, we consider Wilson’s algorithm to produce random spanning forests.

Wilson’s algorithm for generating a random spanning forest with roots R: Start a copy
of (Xn)n∈N at any arbitrary state i, run the chain until it hits j ∈ R, and then perform a loop
erasure operation to obtain a path from i to j ∈ R. This path will then be the unique path in
the ultimately generated forest produced by following stages of the algorithm, in which another
copy of (Xn)n∈N is started at any arbitrary state not in this path, until it hits either the path or a
different j ′ ∈ R, and so on, growing an increasing family of forests which eventually span all of
S \ R, when the algorithm terminates.

Proposition 5.1. Wilson’s algorithm for generating a random forest spanning S with roots R

terminates in finite time almost surely if and only if w(R) > 0, in which case Wilson’s algorithm
generates each forest f with ROOTS(f) = R with probability �P(f)/w(R).

Proof. This can be proved by simply adapting the cycle-popping argument of Wilson [107] to the
present case. However, the result can also be derived from the more standard case of irreducible
chains as follows. Let ∂ be an additional state not in S, and consider the modified Markov chain
with state space S̃ := S ∪ ∂ and transition matrix

p̃ij :=

⎧⎪⎨⎪⎩
pij 1(j ∈ S) if i ∈ S \ R,

1(j = ∂) if i ∈ R,

1(j ∈ S \ R)/|S \ R| if i = ∂.

It is straightforward that P̃ := (p̃ij ; i, j ∈ S̃) is irreducible if and only if w(R) > 0. Also, if t
is a tree with root ∂ and f is the restriction of t to S, then �P̃(t) = �P(f). Wilson’s algorithm
for generating a forest f spanning S with root set R is now seen to be a variation of Wilson’s
algorithm to generate t spanning S̃ with root ∂ . �

Avena and Gaudillière [5] were interested in random forests with random roots R. They proved
that under additional killing rates, the set of roots sampled by Wilson’s algorithm is a determi-
nantal process. Chang and Le Jan [24] showed how Poisson loops arise in the construction of
random spanning trees by Wilson’s algorithm. Though closely related to ours, their situations
seem to be more complicated.

Derivation of the harmonic tree formula (1.9) from Wilson’s algorithm. Observe that the
harmonic tree formula (1.9) is a consequence of the success of Wilson’s algorithm for sampling f
with probability proportional to �P(f). The first stage of Wilson’s algorithm is to start a copy of
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the Markov chain (Xn)n∈N at some i /∈ R and run it until time TR . For each r ∈ R, the eventual
forest f generated by Wilson’s algorithm has r as the root of the tree containing i if and only
if this first stage results in XTR

= r . Since f ends up distributed with probability proportional to
�P(f), the formula (1.9) is immediate.

We have shown in Section 2 that the Green tree formula (1.7) can be deduced from the har-
monic tree formula (1.9). Now we make use of the Green tree formula to prove Wilson’s algo-
rithm. These imply that Wilson’s algorithm, the harmonic tree formula (1.9) and the Green tree
formula (1.7) can be derived from each other.

Derivation of Wilson’s algorithm from the Green tree formula (1.7). We borrow the argu-
ment which first appeared in Lawler [62], Section 12.2, and was further developed by Marchal
[78] and Kozdron, Richards and Stroock [61]. See also Lawler and Limic [63], Section 9.7, and
Stroock [99], Section 3.3.

By the strong Markov property, the probability that (i1, . . . , iK) with iK ∈ R are successive
states visited by loop-erased chain (Xn;0 ≤ n ≤ TR) can be written as follows, using the notation
R1 := R and Rj := R ∪ {i1, . . . , ij−1} for 2 ≤ j ≤ K .

P
R(i1, . . . , iK) =

∞∑
m1,...,mK−1=0

Pi1(Ti1 < TR1)
m1pi1i2 · · ·PiK−1(TiK−1 < TRK−1)

mK−1piK−1iK

=
K−1∏
k=1

pikik+1

1

1 − Pik (Tik < TRk
)

(5.1)

=
K−1∏
k=1

pikik+1 ·Eik

Rk∑
n=0

1(Xn = ik)

= w(RK−1)

w(R)

K−1∏
k=1

pikik+1,

where the last equality follows from the Green tree formula (1.7). We initialize Wilson’s algo-
rithm by setting V0 := {r}. Then define recursively Vl , the set of states visited up to lth iteration,
and tl the tree branch added at lth iteration. From (5.1), we deduce the probability for a spanning
tree t with root r ∈ S generated by Wilson’s algorithm

∏
l≥1

w(Vl)

w(Vl−1)
�P(tl ) = w(S)

w({r})�
P(t) = �P(t)

w({r}) .

We conclude the section by presenting a generalized Wilson’s algorithm, due to Kassel and
Kenyon [47], for sampling cycle-rooted spanning forests. To proceed further, we need some
definitions. Let G := (V ,E) be a directed finite graph, and R be a subset of V .
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• A cycle-rooted spanning forest (CRSF) in G is a subgraph such that each connected com-
ponent is a cycle-rooted tree, that is containing a unique oriented cycle, and edges in the
bushes (i.e. not in the cycles) being directed towards the cycle.

• An essential cycle-rooted spanning forest (ECRSF) of (G,R) is a subgraph such that each
connected component is either a tree directed towards a vertex in R, or a cycle-rooted tree
containing no vertices in R. In particular, an ECRSF of (G,∅) is a CRSF.

Now to each cycle γ of the Markov chain (Xn)n∈N, we assign a parameter of selection α(γ ) ∈
[0,1]. For an ECRSF fec with vertex set S, call

�P,α(fec) :=
∏

i→j∈fec

pij

∏
γ⊂fec

α(γ )

the (P,α)-weight of fec.
Kassel and Kenyon’s generalized Wilson’s algorithm generates a random ECRSF whose prob-

ability distribution over ECRSFs fec with tree roots R is proportional to �P,α(fec). The method
is a refinement of the cycle-popping idea: we simply run Wilson’s algorithm, and when a cycle
γ is created, flip a coin with bias α(γ ) ∈ [0,1] to decide whether to keep or to pop it.

Kassel–Kenyon–Wilson’s algorithm for generating an ECRSF with roots R. Let 	 be a
directed subgraph, initially set to be the tree roots R. Start a copy of (Xn)n∈N at any arbitrary
state i /∈ 	, and run the chain until it first reaches a state j , which either belongs to 	 or creates
a loop in the path.

• If j ∈ R, then replace 	 by the union of 	 and the path which is just traced. Start another
copy of (Xn)n∈N at i /∈ 	 and repeat the procedure.

• If a loop γ is created at the visit of the state j , then sample an independent {0,1}-Bernoulli
random variable with success probability α(γ ).
– If the outcome is 1, then replace 	 by the union of 	 and the path which is just traced.

Start another copy of (Xn)n∈N at i /∈ 	 and repeat the procedure.
– If the outcome is 0, then pop the loop and continue the chain until it hits 	 or a loop is

created. In this case, repeat the above procedure.

Theorem 5.2. [47] Kassel–Kenyon–Wilson’s algorithm for generating a random essential cycle-
rooted forest spanning S with tree roots R terminates in finite time almost surely if and only if at
least one cycle has a positive parameter of selection, which is equivalent to∑

ROOTS(fec)=R

�P,α(fec) > 0,

where the sum is over all ECRSFs labeled by S with tree roots R. In this case, the algorithm
generates each ECRSF fec with tree roots R with probability �P,α(fec)/w

ec(R).

When α = 0, Theorem 5.2 specializes to Wilson’s algorithm for generation of spanning forests,
Proposition 5.1. As Wilson’s algorithm is related to various matrix tree theorems, Theorem 5.2
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has some affinity to Forman–Kenyon’s matrix CRSF theorem [37,55]. They proved that the de-
terminant of the line bundle Laplacian matrix with Dirichlet boundary can be expressed as a
certain (E)CRSF sum-product. See Kassel [46] for derivation of Forman–Kenyon’s matrix CRSF
theorem from Theorem 5.2.

Observe that if we set α(γ ) = 1 for all cycles γ , then �P,1(fec) = �P(fec). For i ∈ S and
j ∈ R, let

wec
ij (R) :=

∑
ROOTS(fec)=R,i�j

�P(fec),

be the (P,1)-weight of all ECRSFs fec with tree roots R, in which the tree containing i has root j ,
and

wec(R) :=
∑

ROOTS(fec)=R

�P(fec).

Let Tloop be the first time at which a loop is created, and TR is the entry time of the set R ⊂ S.
As a direct application of Theorem 5.2, we derive an analog of the harmonic tree formula:

Pi (XTR∧Tloop = j) = wec
ij (R)

wec(R)
for i ∈ S and j ∈ R, (5.2)

and by summing over j ∈ R,

Pi (TR < Tloop) =
∑

j∈R wec
ij (R)

wec(R)
for i ∈ S. (5.3)

6. Loose ends and further references

6.1. Spanning trees and other models

Spanning trees are closely related to various mathematical models. The connection between uni-
form spanning trees and loop-erased random walks has been discussed in Section 5. Here we list
two more examples.

• Temperley [101,102] established a bijection between spanning trees of a square grid and
perfect matchings/dimer coverings of a related square grid. This bijection was extended
to general planar graphs by Burton and Pemantle [19], and Kenyon, Propp and Wilson
[56]. As an analog of Kirchhoff’s matrix tree theorem for enumerating spanning trees,
Kasteleyn–Temperley–Fisher’s theory [50,103] expresses the number of dimer configura-
tions in a graph in terms of the determinant of the Kasteleyn matrix. See Wu [108] and
Kenyon [54], Section 3, for further development.

• Dhar [31], and Majumdar and Dhar [76] constructed a bijective map between spanning trees
of a graph and recurrent sandpiles on that graph. This map is not unique, and an alterna-
tive bijection was provided by Cori and Le Borgne [29]. See Járai [44] for development
on sandpile models. Recently, Kassel and Wilson [49] have developed a new approach to
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computing sandpile densities of planar graphs by using a two-component forest formula of
Liu and Chow [68].

See also Sokal [96] for how spanning trees arise as the limit of q-Potts model as q → 0, and
Bogner and Weinzierl [15] for the use of spanning trees in the quantum field theory.

6.2. Kemeny’s constant and enumerate of spanning forests

We start with a simple example of Corollary 1.4. Let (Xk)k∈N be a Markov chain with state space
S := [n], and transition matrix P = (pij ; i, j ∈ [n]) defined by

pij := 1

n
for all i, j ∈ [n].

Let K be Kemeny’s constant defined by (1.14) for the chain (Xk)k∈N. By Corollary 1.4,

K = 1 + n · |{rooted two-component forests spanning S}|
|{rooted trees spanning S}| . (6.1)

According to Corollary 2.4 (Cayley’s formula),∣∣{rooted trees spanning S}∣∣= nn−1,

and ∣∣{rooted two-component forests spanning S}∣∣= (
n

2

)
· 2nn−3,

which yields K = n.
Generally, we consider a weighted directed graph (G, c). Define the ratio

R(G,c) := �
(2)
c

�
(1)
c

, (6.2)

with

�(r)
c :=

∑
t1,...,tr

�c(t1, . . . , tr ) for r ∈N, (6.3)

where the sum is over all forests of r directed trees t1, . . . , tr spanning G. So

R(G,1) = n − 1

n
∼ 1 as n → ∞.

In particular, the relation (6.1) leads to K = 1 + nR(G,1) = n.
Similarly, for a weighted undirected graph (G, c), we define the ratio R′(G, c) as in (6.2)–(6.3)

but with the sum over all unrooted trees/forests spanning G. In this case,

R′(G,1) = |{unrooted two-component forests spanning S}|
|{unrooted trees spanning S}| .
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By an obvious bijection between unrooted spanning trees and rooted spanning trees with a par-
ticular root, we get ∣∣{unrooted trees spanning S}∣∣= nn−2.

Following from Moon [82], Theorem 4.1, we have

∣∣{unrooted two-component forests spanning S}∣∣= nn−4(n − 1)(n + 6)

2
.

Consequently,

R′(G,1) = (n − 1)(n + 6)

2n2
∼ 1

2
as n → ∞.

Recently, Kassel and Wilson [49] considered the case where G is a planar graph, and derived
the asymptotic of R′(G, c) as n → ∞. See also Kenyon and Wilson [57], and Kassel, Kenyon
and Wu [48] for related results.

6.3. Asymptotic enumeration of spanning trees

We have seen that Kirchhoff’s matrix tree theorem enumerates explicitly spanning trees in fi-
nite graphs. It is interesting to understand the asymptotics of the number of spanning trees of a
sequence of finite graphs that “approach” an infinite graph.

The following result was proved by Lyons [71,73]. Let (Gn;n ∈ N) be a sequence of finite con-
nected graphs with bounded average degree, converging in the local weak sense of Benjamini–
Schramm [9] to a probability measure ρ on an infinite graph G. Then

lim
n→∞

1

|V (Gn)| log
∣∣{unrooted spanning trees in Gn}

∣∣= h(ρ), (6.4)

where h(ρ) is called the tree entropy of ρ on G. If ρ is unimodular, then h(ρ) = log detρ LG,
where detρ LG is the Fuglede–Kadison determinant of the graph Laplacian LG. The notion of
Fuglede–Kadison determinant originates from von Neumann algebra, see e.g. de la Harpe [30]
for a quick review.

As explained by Lyons [71], the tree entropy h(ρ) appears as the entropy per vertex of a
measure, which is the weak limit of the uniform spanning tree measures on Gn. We refer to
Pemantle [85], Lyons [70], and Benjamini, Lyons, Peres and Schramm [8] for further discussion
on the limiting uniform measures on spanning forests/trees.
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