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The gains from agglomeration economies are believed to be highly localized. Us-
ing confidential Census plant-level data, we show that large industrial plant openings
raise the productivity not only of local plants but also of distant plants hundreds of miles
away, which belong to large multi-plant, multi-region firms that are exposed to the local
productivity spillover through one of their plants. This “global” productivity spillover
does not decay with distance and is stronger if plants are in industries that share knowl-
edge with each other. To quantify the significance of firms’ plant-level networks for the
propagation and amplification of local productivity shocks, we estimate a quantitative
spatial model in which plants of multi-region firms are linked through shared knowl-
edge. Counterfactual exercises show that while large industrial plant openings have a
greater local impact in less developed regions, the aggregate gains are greatest when the
plants locate in well-developed regions, which are connected to other regions through
firms’ plant-level (knowledge-sharing) networks.

KEYWORDS: Productivity spillover, plant-level networks, agglomeration economies.

1. INTRODUCTION

AT LEAST SINCE Marshall (1890), economists have hypothesized that spatial proximity
between firms may generate productivity spillovers. These productive externalities may
explain why firms locate near one another, and why state and local governments spend
billions of dollars in subsidies to attract firms to their jurisdictions. But how large are these
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externalities, and how broad is their reach? In this paper, we show that local productivity
spillovers can propagate through the entire economy through the plant-level networks
of multi-region firms. Building on the empirical framework in Greenstone, Hornbeck,
and Moretti (2010, GHM), we show that the opening of large industrial plants (“Million
Dollar Plants,” “MDPs”) raises the productivity not only of local incumbent plants but
also of distant plants hundreds of miles away, which belong to large multi-plant, multi-
region firms that are exposed to the local spillover through one of their plants. Thus,
our results suggest that the (already large) agglomeration spillover effects identified by
GHM (i) are undercounted and (ii) accrue to other locations as well. Our results have
important policy implications. For one, they imply that local industrial policies aimed at
attracting investments, such as MDPs, may have positive effects on productivity in other
regions. The traditional view is that such policies, by diverting resources away from other
regions, have a zero (or negative) effect on aggregate productivity. Moreover, our results
imply that local policymakers are unlikely to fully internalize the productive externalities
generated by their investment policies. While these policies may benefit local plants, they
also benefit plants outside the policymakers’ jurisdictions.

Marshall famously divided agglomeration economies into three broad categories: (i)
labor market pooling, (ii) knowledge spillovers, and (iii) input-output linkages. We find
no evidence that the productivity gains at either local or distant plants are the result of
input, output, or any other trade linkages with the MDP. And while labor market pooling
may contribute to the local productivity spillover, it is unlikely that a thicker labor market
in the MDP county would raise the productivity of distant plants hundreds of miles away.
Knowledge, on the other hand, can be used in local and distant plants alike. Indeed, once
it spills over to a firm’s local plant, it can be freely shared with other plants of the firm
(Markusen (1984)). Consistent with this idea, we find that the productivity gains at distant
plants do not decay with distance to the MDP. By contrast, the local productivity spillover
decays rapidly with distance: it is strong within a 50-mile radius around the MDP, weaker
within 100 miles, and insignificant beyond. Hence, while productivity spillovers between
plants of different firms are highly localized, they seem to propagate without much friction
between different plants of the same firm. Finally, and also consistent with knowledge
sharing, we find that the “global” productivity spillover is stronger if the MDP and the
distant plant are in the same industry or in industries that share knowledge with each
other, as measured by mutual R&D flows and patent citations.

To quantify the significance of plant-level networks for the propagation and amplifica-
tion of productivity spillovers, we develop and estimate a quantitative spatial equilibrium
model with goods trade, labor mobility, input-output linkages, plant-level networks, and
a rich and realistic geography. While our model builds on the canonical framework devel-
oped in Allen and Arkolakis (2014), Ahlfeldt, Redding, Sturm, and Wolf (2015), Redding
(2016), and Monte, Redding, and Rossi-Hansberg (2018), we depart from this framework
in a number of significant ways.1 In our model, heterogeneous plants belonging to differ-
ent sectors produce differentiated goods. Within a region and sector, plants differ in their
productivities and parent firms. Plants of the same firm, across regions, are linked through
shared knowledge. Specifically, we assume that plant-level productivity depends on local
knowledge and knowledge in other regions in which the parent firm operates. This gener-
ates productivity linkages across regions and provides a direct mechanism through which

1Redding and Rossi-Hansberg (2017) provided a taxonomy of the various modeling assumptions and build-
ing blocks in quantitative spatial models.
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productivity shocks in one region propagate to other regions.2 Despite this complexity,
our model admits a simple representation where, within a region and sector, plants’ pro-
ductivities aggregate into a single productivity index. Across regions and sectors, this nests
our model into an augmented (economic geography) version of the multi-region, multi-
sector model of Caliendo and Parro (2015).

The typical economic geography model focuses on regional outcomes; parameters
can thus often be identified using regional aggregates. By contrast, our model features
within-region, across-plant heterogeneity. Thus, plant-level micro moments are needed to
identify the model’s parameters. In our estimation, we target as moments reduced-form
difference-in-differences estimates—semi-elasticities of plant-level employment, wages,
and productivity with respect to the MDP openings—both for local and distant plants.
To generate model-based estimates that correspond to these reduced-form estimates, we
simulate MDP openings in our model economy. This provides us with “pre-” and “post-
shock” observations, allowing us to estimate plant-level difference-in-differences regres-
sions that closely mirror those in our reduced-form analysis.

Given our parameter estimates, we undertake counterfactual analyses to quantify the
role of within-firm, across-location (“global”) knowledge sharing for the diffusion and
amplification of local productivity shocks. In our first counterfactual, we quantify the ag-
gregate welfare effects of large plant openings, with a focus on the underlying propagation
forces. We find that global knowledge sharing and input-output forces have roughly simi-
lar amplification effects. Also, they interact in meaningful ways.

Opening a large industrial plant can have a significant impact on a region, especially
for less developed regions. However, in the data, almost all of the MDPs open in regions
that are already well developed. This raises the question of whether government should
intervene to aid less developed regions. In our second counterfactual, we inform this pol-
icy debate by randomly assigning large plant openings to more or less developed regions.
We find an ambiguous role for regional development. On one hand, the impact on local
incumbent plants is greater if the plant opens in a less developed region. In our model,
less developed regions have a lower stock of knowledge (recovered from the data), so the
relative productivity gains at incumbent plants are higher in those regions. On the other
hand, due to global knowledge sharing, the impact on the rest of the economy is greater if
the plant opens in a well-developed region, which is connected to other regions through
plant-level (knowledge-sharing) networks. We find that the second effect dominates, so
the aggregate gains are greatest if the plant opens in a well-developed region, consistent
with the observed location choices of the MDPs in the data.

Our paper is related to several strands of literature. First and foremost, our paper con-
tributes to the empirical literature on estimating agglomeration economies. A robust find-
ing in that literature is that these economies are highly localized.3 We, too, find that local
productivity spillovers, which take place between plants of different firms, decay rapidly
with distance. However, we find that global productivity spillovers, which take place be-
tween different plants of the same firm, do not decay with distance. Our findings inform
the academic debate about the spatial reach of agglomeration economies. In a recent
article, Rosenthal and Strange (2020, p. 27) wrote:

2Our model is designed to study productivity spillovers within firms across regions; this sets it apart from
models that focus on the evolution of the aggregate productivity distribution (e.g., Lucas and Moll (2014),
Perla and Tonetti (2014)).

3Numerous empirical studies find that agglomeration economies are highly localized; see the survey ar-
ticles by Audretsch and Feldman (2004), Duranton and Puga (2004), Rosenthal and Strange (2004, 2020),
and Combes and Gobillon (2015). GHM provided well-identified reduced-form estimates of agglomeration
spillovers using the MDP openings as natural experiments.
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“Implicit in the idea that spatial concentration increases productivity is another idea: the degree of
proximity matters. Agglomeration economies must decay with distance. How close, then, do firms and
workers need to be to each other to benefit from agglomeration economies?”

Our paper provides a nuanced answer. On one hand, firms must have a nearby plant
to benefit from knowledge spillovers. As we show, the local agglomeration externality is
strongly significant only within a 50-mile radius around the MDP. However, not all of a
firm’s plants need to be located nearby. In fact, it may suffice if only one of the firm’s
plants is located in close proximity to the MDP. Once the knowledge spills over to that
plant, it can be freely shared with other plants of the firm, thus raising the productivity of
distant plants hundreds of miles away.

Second, our paper is related to the empirical literature on place-based policies (e.g.,
GHM (2010), Busso, Gregory, and Kline (2013), Kline and Moretti (2014b), Gaubert,
Kline, and Yagan (2021)).4 A fundamental insight from this literature, well voiced in
Glaeser and Gottlieb (2008), is that when agglomeration elasticities are equal across lo-
cations, laissez-faire is efficient, and place-based policies are welfare-reducing. In our set-
ting, agglomeration elasticities are not equal across locations, because multi-plant, multi-
region firms are not evenly spread across space. As a case in point, our counterfactual
analysis shows that the (positive) aggregate effects of large industrial plant openings are
greatest if the plant opens in a well-developed region, which is connected to many other
regions through firms’ plant-level networks.

Third, various papers study how shocks propagate across regions or within firms.
Caliendo, Parro, Rossi-Hansberg, and Sarte (2018) and Hornbeck and Moretti (2024)
showed that regional productivity shocks may impact other regions through trade and
labor flows. Our paper shows that regional productivity shocks spread throughout the
economy through the plant-level networks of multi-region firms. At the firm level, Bar-
rot and Sauvagnat (2016) and Carvalho, Nirei, Saito, and Tahbaz-Salehi (2021) showed
that local shocks caused by natural distasters may spread across regions through firms’
supply-chain networks. Our paper studies production networks within firms. Also, in our
setting, the within-firm diffusion of shocks is not driven by input-output linkages. More
closely related to our paper, Ding (2023) studied how shocks spread within multi-plant,
multi-industry firms. Specifically, he found that a positive demand shock in one industry
of a firm increases its sales in another industry, and the effect is stronger the more the
two industries share knowledge inputs. Importantly, Ding provided compelling evidence
that knowledge is non-rival within the firm, consistent with the premise of, and results in,
our paper. Finally, Giroud and Mueller (2019) studied how local demand shocks spread
across regions through the internal networks of multi-region, multi-establishment firms.
Unlike our paper, which focuses on within-firm knowledge sharing, Giroud and Mueller
focused on firm-wide financial constraints as a mechanism that generates linkages be-
tween a firm’s establishments, and ultimately between regions.

The remainder of this paper is organized as follows. Section 2 presents our main
reduced-form results. Section 3 explores potential mechanisms. Section 4 develops a
quantitative spatial model in which plants of multi-region firms are linked through shared
knowledge. Section 5 contains the structural estimation of the model. Section 6 presents
counterfactual analyses. Section 7 concludes.

4Glaeser and Gottlieb (2008), Moretti (2011), Kline and Moretti (2014a), and Neumark and Simpson (2015)
discussed the economics of place-based policies. Bartelme, Costinot, Donaldson, and Rodríguez-Clare (2024)
studied optimal industrial policies at the sectoral (as opposed to the regional) level.
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2. REDUCED-FORM EVIDENCE

2.1. Research Design

We examine how local productivity spillovers propagate across U.S. regions through
the plant-level networks of multi-region firms. To identify local productivity spillovers, we
build on the natural experiments in GHM, who studied the impact of MDP openings on
the productivity of incumbent plants. In their setting, plants in (one or more) “runner-up”
counties, which narrowly lost the competition, serve as counterfactuals for plants in the
“winner” county where the MDP located.5 We match the MDP openings in the Appendix
of Greenstone and Moretti (2003) to plants in the U.S. Census Bureau’s Standard Sta-
tistical Establishment List (SSEL) based on firm and county name. Exactly as in GHM,
we have 11 MDP openings between 1982 and 1985, 18 MDP openings between 1986 and
1989, and 18 MDP openings between 1990 and 1993, adding up to 47 MDP openings.

We use confidential plant-level data from the Census of Manufactures (CMF), the An-
nual Survey of Manufactures (ASM), and the Longitudinal Business Database (LBD)
provided by the U.S. Census Bureau. The CMF and ASM contain information about key
plant-level variables, such as shipments, assets, material inputs, employment, payroll, cap-
ital expenditures, industry, and location. The LBD contains longitudinal establishment
identifiers along with data on employment, payroll, industry, location, and firm affiliation.
We first consider the local productivity spillover from the MDP opening on incumbent
plants in the winner county. For each MDP opening, we identify all incumbent plants
in the winner and corresponding runner-up counties. We use all observations from five
years before until five years after the MDP opening, leaving us with 157,000 plant-year
observations.6 We next consider the global productivity spillover on plants outside the
winner county that belong to parent firms which have a plant in the winner county before
and after the MDP opening.7 For simplicity, we refer to these plants outside the winner
county as “treated plants,” though technically they are “indirectly treated,” as they belong
to firms which are exposed to the MDP opening through one of their plants. To avoid con-
fusion, we refer to incumbent plants in the winner county not as “treated” but simply as
“plants in the winner county” or “plants in the MDP county.” We use various control
groups, leaving us with either 1,407,000, 1,046,000, or 423,000 plant-year observations.
We always exclude the MDPs as well as any plants owned by the MDPs’ parent firms. The
sample period is from 1977 to 1998.

Table I provides summary statistics from the year before the MDP opening. Panel A
shows plant-level statistics for the local spillover sample consisting of plants in the winner
and runner-up counties. Panels B and C show plant- and firm-level statistics for the global
spillover sample with 423,000 plant-year observations. This sample consists of (treated)
plants outside the winner county that belong to firms with plants in the winner county

5Winner and runner-up counties are from the reported location rankings of firms in the corporate real estate
journal Site Selection. The journal includes a regular feature article, Million Dollar Plants, that describes where
a firm decided to locate a large manufacturing plant. The feature article was last published in 1993.

6All sample sizes are rounded to the nearest 1000 following U.S. Census Bureau disclosure guidelines.
7Since we estimate difference-in-differences regressions, we require all plants to have “before” and “after”

observations, in both the local and global spillover sample. We do not require plants to be continuously present
during the entire 11-year window around the MDP opening. Given that the ASM gets re-sampled every five
years, this implies that smaller plants in the ASM, which are sampled probabilistically, will be in our analysis
sample for at least five years, for example, from two years before until two years after the MDP opening. Larger
plants are sampled with certainty into the ASM and will be in our analysis sample much longer, often for the
entire 11-year window surrounding the MDP opening.
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TABLE I

SUMMARY STATISTICS.

(1) (2) (3) (4)

Panel A: All Winner Loser p-value (2)−(3)
Employees 141.7 146.3 139.8 0.377

(571.4) (589.3) (562.8)
Wages 39.5 41.5 38.7 0.454

(852.7) (877.2) (763.9)
TFP 0.002 0.003 0.001 0.672

(0.586) (0.610) (0.551)

Panel B: All Treated Control p-value (2)−(3)
Employees 268.2 272.6 266.3 0.482

(846.7) (903.4) (821.8)
Wages 35.9 34.3 36.5 0.535

(202.2) (311.5) (162.9)
TFP 0.016 0.017 0.016 0.903

(0.640) (0.653) (0.637)

Panel C: All Treated Control p-value (2)−(3)
Employees 1988 1968 1997 0.834

(6702) (6862) (6548)
Plants 7.4 7.3 7.5 0.661

(10.9) (10.6) (11.0)
Counties 5.4 5.3 5.5 0.532

(7.7) (7.2) (7.8)
States 2.7 2.6 2.8 0.448

(2.8) (2.6) (2.9)

Note: Panel A provides plant-level statistics for the local spillover sample. Panel B provides plant-level statistics for the global
spillover sample consisting of 423,000 plant-year observations. Panel C provides firm-level statistics for the parent firms associated
with the plants in Panel B. Column (4) reports p-values of the difference between columns (2) and (3). Wages are in $1000. All
statistics are from the year prior to the MDP opening. Standard deviations are in parentheses. The sample period is from 1977 to
1998.

(treatment group) as well as plants in the same (distant) counties as the treated plants
that belong to firms with plants in the runner-up counties (control group).

2.2. Local Productivity Spillover

We first consider the local productivity spillover from the MDP opening on incumbent
plants in the winner county. We estimate the following specification:

yickst = ξc + ξk + ξst +β1Postct +β2(Winneri × Postct) + εickst� (1)

where yickst denotes plant-level productivity (TFP), i denotes counties, c denotes cases,
k denotes plants, s denotes industries, t denotes years, Postct is an indicator for case c
that is one from the year of the MDP opening onward, Winneri is an indicator for the
winner county, and ξc , ξk, and ξst denote case, plant, and industry × year fixed effects,
respectively.8 A “case” comprises the winner county and associated runner-up counties.

8TFP is the estimated residual from a plant-level regression of output on capital, labor, and material inputs
(in logs). To allow for different factor intensities across industries and over time, we estimate the regression
separately for each 3-digit SIC code industry and year. Accordingly, TFP can be interpreted as the relative
productivity of a plant within a given industry and year.
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TABLE II

LOCAL PRODUCTIVITY SPILLOVER.

TFP

(1)
Unweighted

(2)
Distance

(3)

MDP 0.040 0.038
(0.016) (0.014)

MDP × (<50 miles) 0.043
(0.015)

MDP × (50 to 100 miles) 0.027
(0.014)

MDP × (100 to 250 miles) 0.011
(0.010)

Plant FE Yes Yes Yes
Industry × year FE Yes Yes Yes
Case FE Yes Yes Yes

R-squared 0.88 0.82 0.86
Observations 157,000 157,000 2,209,000

Note: The dependent variable is TFP at the plant level. MDP is an indicator for the winner county that is 1 from the year of the
MDP opening onward. In column (3), (<50 miles), (50 to 100 miles), and (100 to 250 miles) are indicators for whether a plant lies
within 50 miles, between 50 and 100 miles, and between 100 and 250 miles, respectively, of the MDP. Only the main coefficients of
interest are shown. Except for column (2), observations are weighted by plant-level employment. Standard errors are double clustered
at the county and year level. The sample period is from 1977 to 1998.

The case and plant fixed effects capture time-invariant heterogeneity across cases and
plants, respectively. Importantly, the case fixed effects ensure that the impact of the MDP
opening on incumbent plants is identified from comparisons within a given winner-loser
pair. The industry × year fixed effects capture time-varying shocks at the industry level.
Industries are defined at the 3-digit SIC code level. The main coefficient of interest is β2,
which captures the mean change in productivity at plants in the winner county relative to
plants in the runner-up counties.

Table II presents the results. In this and all other tables, we only report the main coeffi-
cient(s) of interest and write “MDP” in lieu of Winneri × Postct for brevity. As column (1)
shows, the MDP opening raises the productivity of incumbent plants in the winner county
by 4% relative to plants in the runner-up counties.9 In all our regressions, we weigh ob-
servations by plant-level employment from five years before the MDP opening or, if not
available, from the earliest available pre-treatment year. As column (2) shows, the re-
sult is similar if we do not weigh by employment. Finally, in column (3), we examine if
the local productivity spillover decays with distance to the MDP. To this end, we identify
all plants within a 250-mile radius around the MDP. We create three dummy variables,
(< 50 miles)k, (50 to 100 miles)k, and (100 to 250 miles)k, indicating whether a plant lies
within 50 miles, between 50 and 100 miles, or between 100 and 250 miles of the MDP,
and interact these dummy variables with both terms in equation (1). As is shown, the lo-

9This estimate lies within the range of TFP estimates in GHM (1.46% to 6.13%), albeit it is slightly lower
than their baseline estimate (4.77%). While we require plants to be present before and after the MDP opening,
GHM required plants to be continuously present in the eight years before the MDP opening. This excludes
many smaller plants in the ASM, which are randomly sampled every five years. Table A.I of Supplemental
Appendix A (Giroud, Lenzu, Maingi, and Mueller (2024)) replicates GHM’s baseline result using their speci-
fication and sample selection procedure.
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cal spillover decays rapidly with distance. It is strong within 50 miles of the MDP, much
weaker within 100 miles, and insignificant beyond. Hence, productivity spillovers between
(plants of different) firms are highly localized, consistent with the empirical literature on
agglomeration economies.

2.3. Global Productivity Spillover

We next consider the global productivity spillover on (indirectly) treated plants out-
side the winner county that belong to parent firms with plants in the winner county. We
estimate the same difference-in-differences specification as before, except that Winneri
is now an indicator for whether the plant’s parent firm has a plant in the winner county
before and after the MDP opening, and a “case” includes all treated plants as well as all
plants in the corresponding control group.10

Table III presents the results. In column (1), the choice of control group is motivated by
the local spillover analysis. To account for firm-level exposure to unobserved shocks that
may affect both winner and runner-up counties, the control group consists of all plants
outside the runner-up counties that belong to parent firms with plants in the runner-up
counties (“runner-up firms”). As in the local spillover analysis, this specification includes

TABLE III

GLOBAL PRODUCTIVITY SPILLOVER.

TFP

(1) (2) (3)

MDP 0.018 0.020 0.018
(0.007) (0.008) (0.008)

Plant FE Yes Yes Yes
Industry × year FE Yes - -
Industry × county × year FE - Yes Yes
Case FE Yes - Yes

Control group Plants of runner-up firms Plants of MC firms in
same county

Plants of runner-up firms
in same county

R-squared 0.87 0.86 0.88
Observations 1,407,000 1,046,000 423,000

Note: The dependent variable is TFP at the plant level. MDP is an indicator for whether the plant’s parent firm has a plant in
the winner county before and after the MDP opening. The indicator is 1 from the year of the MDP opening onward. In column (1),
the control group consists of all plants of runner-up firms. In column (2), the control group consists of all plants of MC firms in the
same county as the treated plant. In column (3), the control group consists of all plants of runner-up firms in the same county as the
treated plant. In all three columns, the sample is restricted to MC plants outside the winner and runner-up counties. Only the main
coefficients of interest are shown. Observations are weighted by plant-level employment. Standard errors are double clustered at the
county and year level. The sample period is from 1977 to 1998.

10For expositional clarity, we estimate the local and global spillover effects in separate regressions; they
are based on (almost completely) non-overlapping samples and employ different identification strategies. In
principle, they could be jointly estimated in a pooled regression framework, where all variables and fixed
effects are interacted with “local” and “global” indicators to preserve the different identification strategies.
(Only 0.65% of observations in the pooled sample are in both the local and global spillover sample.) Note
that the global spillover regression already fully controls for the local spillover effect by including county ×
industry × year fixed effects. In the local spillover regression, a small number of observations (0.57%) are also
in the global spillover sample, meaning they could be affected by MDP openings in other counties (i.e., from
other MDP cases). Removing these overlapping observations has no effect on our estimates.
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plant, industry × year, and case fixed effects. Thus, we compare treated plants with plants
of runner-up firms in the same industry and year, but possibly in different counties.

Borusyak and Hull (2023) pointed out that omitted variable bias (OVB) may confound
network spillover regressions if exposure to the shock is non-random, even if the origi-
nal shock is exogenous. In our global spillover setting, even if the MDPs are as-good-as
randomly assigned, (indirect) exposure to the MDP openings depends on existing firm
networks, which are non-random. For example, plants in urban areas tend to be part of
larger firm networks, with more connections to other counties, including MDP counties,
implying a higher expected treatment exposure. OVB can then arise if urban areas have
systematically higher unobserved productivity shocks for reasons unrelated to firm net-
work exposure.11 In column (2), we control for unobserved factors that may correlate
with differences in expected treatment exposure along two dimensions: location and in-
dustry. Precisely, the control group consists of all plants of multi-county (MC) firms in the
same county as the treated plant, while the inclusion of industry × county × year fixed ef-
fects absorbs any unobserved time-varying heterogeneity at the location × industry level
that may correlate with expected treatment exposure. Moreover, and importantly, the
inclusion of these fixed effects accounts for the possibility of common shocks between
the county of the treated plant and the MDP county, thereby addressing concerns that
the productivity gains at treated plants may be caused by common regional shocks rather
than regional spillovers within firms’ plant-level networks.

Finally, in column (3), we further refine the control group by recognizing that the quasi-
random assignment of the MDP openings is only with respect to winner and runner-up
counties. Precisely, the control group now only includes plants of runner-up (MC) firms in
the same county as the treated plant. The fixed effects remain the same. Thus, we com-
pare plants in the same county, industry, and year that belong to firms which either have
plants in the winner county (treatment group) or in the corresponding runner-up counties
(control group). This is our tightest specification and will be our baseline specification in
all subsequent global spillover regressions.

As columns (1) to (3) of Table III show, the MDP opening raises the productivity of
treated plants outside the MDP county by 1.8% to 2% relative to plants in the respective
control group. This estimate is stable despite varying control groups and fixed effects.12

While the gains at treated plants are lower than the corresponding gains at plants in the
winner county, Table I shows that the typical treated MC firm has about 6.3 plants outside
the winner county. Thus, the productivity gains at treated plants accrue to a large number
of plants in other counties, generating significant aggregate effects (see the quantitative
exercise in Section 6.1).

11Borusyak and Hull (2023) gave the example of a “deworming RCT” in which individuals’ educational out-
comes depend on how many of their neighbors are dewormed. Even if the deworming is random, the expected
(spillover) treatment depends on how many neighbors an individual has, which is non-random. Individuals in
urban areas are likely to have more neighbors, and will thus receive higher spillovers, generating OVB if urban
areas exhibit different educational outcomes for reasons unrelated to deworming.

12The results are similar if we do not weigh observations by plant-level employment; in the unweighted
version of column (3), the coefficient is 0.016 with standard error of 0.005.
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FIGURE 1.—Treatment effect dynamics. This figure shows the coefficient estimates from columns (2) and
(4) in Table A.II of Supplemental Appendix A along with 95% confidence intervals. The estimates are obtained
using the imputation estimator of Borusyak, Jaravel, and Spiess (2023). The base year is τ = −5.

2.4. Treatment Effect Dynamics

Figure 1 shows the dynamics of the treatment effect for both the local and global
spillover.13 There are three takeaways. First, there are no significant differences in pre-
trends, providing support for the parallel trends assumption. Second, if the productivity
gains propagate through firms’ plant-level networks, then the global spillover should set
in around the same time as—or at least not before—the local spillover. As is shown, both
spillovers become significant one year after the MDP opening. Finally, both spillovers
remain large until the end, suggesting the productivity gains are not transitory.

2.5. Employment and Wages

Table IV studies the impact of the MDP opening on employment and wages. As is
shown, employment and wages at plants in the winner county grow by 3.5% and 3.7%,
respectively, which is roughly in line with the productivity gains. Likewise, employment at
treated plants outside the winner county grows by 1.6%, which is again in line with the
productivity gains. By contrast, wages at treated plants only increase by a small amount.
This is not surprising. Only a small fraction of the plants in distant counties are treated,

13The estimates are obtained using the imputation estimator of Borusyak, Jaravel, and Spiess (2023, BJS).
Table A.II of Supplemental Appendix A shows the BJS estimates side by side with the corresponding OLS
estimates.
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TABLE IV

EMPLOYMENT AND WAGES.

Local Spillover Global Spillover

Employment
(1)

Wages
(2)

Employment
(3)

Wages
(4)

MDP 0.035 0.037 0.016 0.002
(0.013) (0.016) (0.007) (0.004)

Plant FE Yes Yes Yes Yes
Industry × year FE Yes Yes - -
Industry × county × year FE - - Yes Yes
Case FE Yes Yes Yes Yes

R-squared 0.97 0.80 0.98 0.58
Observations 157,000 157,000 423,000 423,000

Note: This table presents variants of the regressions in column (1) of Table II (columns (1) and (2)) and column (3) of Table III
(columns (3) and (4)) in which the dependent variable is either employment (columns (1) and (3)) or wages (columns (2) and (4))
at the plant level. Only the main coefficients of interest are shown. Observations are weighted by plant-level employment. Standard
errors are double clustered at the county and year level. The sample period is from 1977 to 1998.

putting only mild pressure on local wages. As is shown in Section 5, our model can ratio-
nalize this muted wage response along with other central reduced-form moments.

2.6. Extensive Margin

The employment growth in Table IV is along the intensive margin. Table V considers the
extensive margin. As columns (1) and (2) show, there is entry of new plants in the winner
county, but it is only statistically significant for single-county (SC) plants.14 The newly
entering SC plants are small: their average size is only 19.9 employees—about half the size
of incumbent SC plants—and their total manufacturing output share in the winner county
in the five years after the MDP opening is only 0.9%. In columns (3) and (4), we examine
if either SC or MC firms with plants in the winner county open or close plants elsewhere.
In either case, there is no significant effect on plant openings outside the winner county.

3. ANALYSIS OF MECHANISMS

According to Marshall (1890), agglomeration economies can be divided into three
broad categories: labor market pooling, knowledge spillovers, and input-output linkages.
Based on measures of economic distance between the MDP and the incumbent plants,

14Columns (1) and (2) consider entry of MC and SC plants separately. If we consider total entry by all
(SC and MC) plants in the winner county, we obtain a point estimate of 0.059 (standard error: 0.028), which is
lower than the estimate of 0.1255 (standard error: 0.055) in column (1) of Table IX in GHM. Our sampling and
estimation procedures differ from GHM in a number of ways. Notably, GHM used plant-level data from the
CMF and exactly two observations per county (one “pre-” and one “post-MDP” CMF; the CMF is conducted
every five years in years ending in 2 and 7). In contrast, we use all available plant-level data (ASM and CMF)
from five years before until five years after the MDP opening, resulting in a county-year sample that is five
times larger than GHM’s county-year sample. When replicating GHM’s extensive-margin result using their
sampling and estimation procedures, we obtain a point estimate of 0.121 (standard error: 0.056). Using a two-
sample Z-test, we find that this “replication coefficient” is not statistically different from our coefficient of
0.059 at conventional levels (Z-score: 0.99; p-value: 0.322).
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TABLE V

EXTENSIVE MARGIN.

Number of Plants in Winner vs.
Loser Counties

Number of Plants in Other
Counties

MC Plants
(1)

SC Plants
(2)

MC Firms
(3)

SC Firms
(4)

MDP 0.036 0.066 0.005 0.002
(0.026) (0.030) (0.014) (0.014)

County FE Yes Yes - -
Firm FE - - Yes Yes
Year FE Yes Yes - -
Industry × year FE - - Yes Yes
Case FE Yes Yes Yes Yes

R-squared 0.99 0.99 0.24 0.63
Observations 1000 1000 76,000 81,000

Note: This table presents variants of the regression in column (1) of Table II. In columns (1) and (2), the dependent variable is
the logarithm of the number of MC and SC plants, respectively, at the county level. In columns (3) and (4), the dependent variable is
the logarithm of 1 plus the number of plants in other counties of MC and SC firms, respectively, which have plants in the winner or
runner-up counties prior to the MDP opening. Only the main coefficients of interest are shown. Observations are weighted by number
of plants per county (columns (1) and (2)) or firm-level employment (columns (3) and (4)). Standard errors are double clustered at
the county and year level (columns (1) and (2)) or firm and year level (columns (3) and (4)). The sample period is from 1977 to 1998.

GHM concluded that the local productivity spillover is consistent with either labor mar-
ket pooling or knowledge externalities, but not with input-output linkages.15

3.1. Knowledge Sharing

While labor market pooling and knowledge externalities may both contribute to the
local productivity spillover, it is unlikely that a larger labor market in the winner county
would affect the productivity of distant plants hundreds of miles away. Knowledge, on the
other hand, can be used in local and distant plants alike. Indeed, once the knowledge spills
over to a firm’s local plant, it can be freely shared with other plants of the firm (Markusen
(1984)). To explore this idea, we examine if the productivity gains at treated plants become
weaker as the distance to the MDP increases. In Table VI, we exclude all plants within 100
miles, 250 miles, or 500 miles, or within the same state or Census division as the MDP.
As is shown, the estimates are stable and practically identical to the original estimate in
Table III. Hence, unlike the local productivity spillover, which takes place between (plants
of) different firms, the global productivity spillover, which takes place between different
plants of the same firm, does not decay with geographical distance.

Table VII provides additional evidence consistent with knowledge sharing as a mecha-
nism for the global productivity spillover.16 In column (1), we interact both terms in equa-
tion (1) with an indicator for whether the treated plant is in the same 4-digit SIC code
industry as the MDP. Plants in the same 4-digit SIC code industry produce similar goods

15“Thus, the data fail to support the types of stories in which an auto manufacturer encourages (or even
forces) its suppliers to adopt more efficient production techniques” (GHM, p. 576). Table A.III of Supplemen-
tal Appendix A confirms that input-output linkages play no significant role for the local productivity spillover.

16In Table A.III of Supplemental Appendix A, we apply the empirical tests in Table VII to the local produc-
tivity spillover, with analogous results.
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TABLE VI

DISTANCE TO THE MDP.

TFP

Excluding Plants
Within 100 Miles

of the MDP
(1)

Excluding Plants
Within 250 of

the MDP
(2)

Excluding Plants
Within 500 Miles

of the MDP
(3)

Excluding Plants
in MDP State

(4)

Excluding Plants
in MDP Census

Division
(5)

MDP 0.018 0.017 0.018 0.018 0.018
(0.007) (0.007) (0.008) (0.008) (0.008)

Plant FE Yes Yes Yes Yes Yes
Industry × county ×

year FE
Yes Yes Yes Yes Yes

Case FE Yes Yes Yes Yes Yes

R-squared 0.88 0.88 0.89 0.88 0.88
Observations 402,000 365,000 286,000 395,000 345,000

Note: This table presents variants of the regression in column (3) of Table III in which treated plants in close proximity to the MDP
are excluded from the sample. Only the main coefficients of interest are shown. Observations are weighted by plant-level employment.
Standard errors are double clustered at the county and year level. The sample period is from 1977 to 1998.

and use similar production processes and therefore likely draw on similar knowledge.17

As is shown, the global productivity spillover is stronger if the treated plant and the MDP
are in the same industry. In columns (2) and (3), we interact both terms in equation (1)

TABLE VII

KNOWLEDGE FLOWS.

TFP

Same
Industry

(1)

Mutual R&D
Flows

(2)

Mutual Patent
Citations

(3)

MDP 0.017 0.015 0.013
(0.008) (0.008) (0.007)

MDP × knowledge flows 0.012 0.533 0.356
(0.005) (0.263) (0.175)

Plant FE Yes Yes Yes
Industry × county × year FE Yes Yes Yes
Case FE Yes Yes Yes

R-squared 0.88 0.88 0.88
Observations 423,000 423,000 423,000

Note: This table presents variants of the regression in column (3) of Table III. In column (1), both terms in equation (1) are
interacted with a dummy variable indicating whether the treated plant is in the same 4-digit SIC code industry as the MDP. In columns
(2) and (3), both terms in equation (1) are interacted with measures of mutual R&D flows and patent citations, respectively, between
the industry of the treated plant and the industry of the MDP. The measures are the unidirectional measures Techij ≡ max{TechIni←j ,
TechOuti→j} and Patentij ≡ max{PatentIni←j , PatentOuti→j} from Ellison, Glaeser, and Kerr (2010). Only the main coefficients
of interest are shown. Observations are weighted by plant-level employment. Standard errors are double clustered at the county and
year level. The sample period is from 1977 to 1998.

17The 4-digit SIC code classification is extremely fine; it comprises 459 manufacturing industries in the
CMF/ASM. For example, “nitrogenous fertilizers” (SIC 2873), “phosphatic fertilizers” (SIC 2874), and “fertil-
izers, mixing only” (SIC 2875) all have different 4-digit SIC codes.
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with measures of mutual knowledge flows at the industry-pair level from Ellison, Glaeser,
and Kerr (2010). “Mutual R&D flows” captures how R&D in one industry flows out to
benefit another industry; “mutual patent citations” captures the extent to which technolo-
gies associated with one industry cite technologies associated with another industry. As is
shown, the global productivity spillover is stronger if the treated plant and the MDP are
in industries that share knowledge with each other.

3.2. Trade With the MDP

If the MDP buys inputs from, or sells goods to, a local plant in the winner county, it
may also find it easier to buy from, or sell to, other plants of the same firm in distant
counties.18 Exploring trade linkages in the local spillover setting is challenging, as the
MDP and the incumbent plants are in the same county. By contrast, in the global spillover
setting, the MDP and the treated plants are in different counties—the average distance is
612.5 miles—providing us with informative tests to explore the trade channel.

Table VIII shows the results. In columns (1) and (2), we interact both terms in equation
(1) with measures of input or output linkages between the industry of the treated plant
and the industry of the MDP. In column (3), we interact both terms in equation (1) with a
measure of how tradable the treated plant’s industry is. The idea is that, if the channel is
trade, the global spillover should be stronger if the treated plant’s industry is more trad-
able. To measure an industry’s tradability, we use its geographical Herfindahl index based
on the argument that less tradable industries (e.g., cement) are more geographically dis-
persed (Mian and Sufi (2014)). In column (4), we interact both terms in equation (1) with
a measure of exports from the treated plant’s county to the winner county (from the Com-
modity Flow Survey). The idea is that, if the channel is trade, the global spillover should
be stronger if the treated plant is in a county that exports more to the winner county. Fi-
nally, in column (5), we interact both terms in equation (1) with the geographical distance
between the treated plant and the MDP. According to the gravity equation, trade flows
should be declining in distance. Column (6) is similar to column (5), except that we use
shipments in lieu of TFP as the dependent variable. As is shown, all interaction terms
are statistically insignificant, suggesting that our results are not driven by trade with (or
demand from) the MDP.

3.3. Investment in Productivity

Competition with the MDP in the labor or product market may induce incumbent firms
to invest in productivity. Other plants of these firms, in distant counties, may also benefit.
Under this alternative channel, entry by the MDP would still have a causal effect on plant-
level productivity. However, the effect would not be “external” to the plants (as in the case
of knowledge spillovers) but rather “internal,” in the sense that it would be the outcome
of within-firm decisions, for example, to invest in R&D.

18Trade could result in higher measured TFP due to mismeasurement. For instance, if a plant has increasing
returns to scale but is wrongly assumed to have constant returns to scale, an increase in observed TFP might be
(incorrectly) attributed to an increase in fundamental productivity. GHM performed a battery of robustness
tests to assuage concerns regarding TFP mismeasurement. Section VII.F of their paper specifically addresses
the role of output prices and demand effects. In the global spillover setting, the main concern is that the TFP
gains at treated plants might be driven by an increase in demand from the MDP. A general increase in demand
from the winner county (e.g., due to the MDP opening) for goods produced in the treated plant’s county cannot
explain the global spillover result, as the control group consists of plants in the same distant county, industry,
and year as the treated plant.
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TABLE VIII

TRADE WITH THE MDP.

TFP Shipments

Input Flows
(1)

Output Flows
(2)

Tradability
(3)

Exports
(4)

Distance
(5)

Distance
(6)

MDP 0.017 0.017 0.017 0.018 0.019 0.029
(0.008) (0.008) (0.008) (0.008) (0.009) (0.013)

MDP × input/output flows 0.263 0.138
(0.432) (0.250)

MDP × tradability 0.019
(0.034)

MDP × exports 0.031
(0.092)

MDP × distance −0.001 −0.000
(0.004) (0.010)

Plant FE Yes Yes Yes Yes Yes Yes
Industry × county × year FE Yes Yes Yes Yes Yes Yes
Case FE Yes Yes Yes Yes Yes Yes

R-squared 0.88 0.88 0.88 0.88 0.88 0.96
Observations 423,000 423,000 423,000 423,000 423,000 423,000

Note: This table presents variants of the regression in column (3) of Table III. In columns (1) and (2), both terms in equation
(1) are interacted with measures of input and output flows, respectively, between the industry of the treated plant and the industry
of the MDP. The measures are the unidirectional measures Inputij ≡ max{Inputi←j , Inputi→j} and Outputij ≡ max{Outputi←j ,
Outputi→j} from Ellison, Glaeser, and Kerr (2010), where Inputi←j (Outputi→j ) denotes industry i’s inputs (outputs) that come
from (are sold to) industry j, normalized by industry i’s revenues. In column (3), both terms in equation (1) are interacted with a
measure of tradability of the treated plant’s industry. The measure is the industry’s geographical Herfindahl index from Appendix
Table I of Mian and Sufi (2014). In column (4), both terms in equation (1) are interacted with a measure of exports from the treated
plant’s county to the winner county. The measure is the value of shipments from the treated plant’s county to the winner county,
normalized by the value of shipments to the winner county, from the Commodity Flow Survey. In columns (5) and (6), both terms
in equation (1) are interacted with the geographical distance between the treated plant and the MDP. In column (6), the dependent
variable is shipments at the plant level. Only the main coefficients of interest are shown. Observations are weighted by plant-level
employment. Standard errors are double clustered at the county and year level. The sample period is from 1977 to 1998.

Table IX considers the issue of internal versus external effects. Our first set of tests is
based on the premise that, if the effect was internal, investment responses should be het-
erogeneous: SC plants, smaller plants (or plants of smaller firms), and plants of financially
constrained firms should invest less and experience smaller productivity gains as a result.
In columns (1) and (2), we interact both terms in equation (1) with an MC dummy and
plant size (number of employees), respectively. (Using firm size yields similar results.) In
columns (3) and (4), we merge the local spillover sample with Compustat and interact
both terms in equation (1) with measures of firms’ financial constraints: the KZ-index of
Kaplan and Zingales (1997) and the SA-index of Hadlock and Pierce (2010). All interac-
tion terms are statistically insignificant, which is consistent with the effect being external.19

Our second set of tests focuses on R&D (column (5)) and innovation (column (6)) at the
firm level. An increase in either of those margins would be consistent with the effect being
internal. In column (5), we merge the local spillover sample with Compustat; in column
(6), we merge it with both Compustat and the USPTO patent database. As is shown, there

19Consistent with the interaction term on plant size being statistically insignificant, the weighted and un-
weighted coefficient estimates in Table II are similar and not statistically different from each other.
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TABLE IX

INVESTMENT IN PRODUCTIVITY.

TFP R&D Innovation

MC Dummy
(1)

Plant Size
(2)

KZ-Index
(3)

SA-Index
(4) (5) (6)

MDP 0.047 0.043 0.041 0.040 0.001 0.011
(0.018) (0.020) (0.018) (0.017) (0.001) (0.009)

MDP × MC −0.008
(0.017)

MDP × plant size −0.001
(0.006)

MDP × FC −0.001 −0.001
(0.002) (0.004)

Plant FE Yes Yes Yes Yes - -
Firm FE - - - - Yes Yes
Industry × year FE Yes Yes Yes Yes Yes Yes
Case FE Yes Yes Yes Yes Yes Yes

R-squared 0.88 0.88 0.89 0.89 0.70 0.91
Observations 157,000 157,000 42,000 42,000 15,000 40,000

Note: This table presents variants of the regression in column (1) of Table II. In columns (1) and (2), both terms in equation (1)
are interacted with an MC dummy and plant size, respectively. Plant size is the number of employees of the plant in the year before
the MDP opening. In columns (3) and (4), both terms in equation (1) are interacted with firm-level measures of financial constraints
(FC). The sample is restricted to firms in Compustat. In column (3), FC is the KZ-index of Kaplan and Zingales (1997). In column (4),
FC is the SA-index of Hadlock and Pierce (2010). In column (5), the dependent variable is R&D scaled by assets at the firm level. The
sample is restricted to firms in Compustat with non-missing R&D values. In column (6), the dependent variable is the logarithm of 1
plus the number of patents at the firm level. The sample is restricted to firms in the merged Compustat-USPTO patent database. Only
the main coefficients of interest are shown. Observations are weighted by plant-level employment (columns (1) to (4)) or firm-level
employment (columns (5) and (6)). Standard errors are double clustered at the county and year level (columns (1) to (4)) or firm and
year level (columns (5) and (6)). The sample period is from 1977 to 1998.

is no statistically significant effect of the MDP opening on firm-level R&D or patenting
activity, which is again consistent with the effect being external.20

4. THEORETICAL FRAMEWORK

We develop a quantitative spatial model to quantify the impact of knowledge sharing
through plant-level networks on sub-regional, regional, and aggregate outcomes. In our
model, heterogeneous plants belonging to different sectors produce differentiated goods.
Within a region and sector, plants differ in their productivities and parent firms. Plants
can be either stand-alone (“single-county plants” or “SC plants”) or belong to parent
firms with plants in other locations (“multi-county plants” or “MC plants”). Plants’ pro-
ductivities depend on local knowledge. MC plants’ productivities additionally depend on
knowledge in the other regions in which the parent firm has plants; this generates direct
productivity linkages across regions. Despite this complexity, our model admits a simple
representation whereby, within a region and sector, plants’ productivities aggregate into

20Merging the local spillover sample with Compustat—or Compustat and the USPTO patent database—
reduces the number of sample firms. One concern is that the local spillover effect is insignificant in these
smaller samples due to lack of statistical power. This is not the case. When we estimate the local spillover
regression on the plant-year samples that correspond to the firm-year samples in columns (5) and (6), we
obtain coefficients of 0.040 (standard error: 0.019) and 0.039 (standard error: 0.017), respectively.



LOCAL PRODUCTIVITY SPILLOVERS 1605

a single productivity index. Across regions and sectors, this nests our model into an aug-
mented version of the multi-region, multi-sector model of Caliendo and Parro (2015).

4.1. Primitives

Our model economy consists of N heterogeneous regions (“locations” or “counties”)
which interact through trade in goods markets and labor mobility. Locations, denoted by
i� n ∈ N , exogenously differ from one another with regard to land supply, amenities, and
the spatial allocation of intermediate goods producers (“plants”). Plants are organized
into J networks, denoted by j, k, which we call firms. JSC firms consist of a single plant
(“single-county firms” or “SC firms”); JMC firms have plants in multiple counties (“multi-
county firms” or “MC firms”). Each county has at least one plant, and each MC firm has
at most one plant per county. Each plant belongs to one of S sectors, denoted by s, t∈ S .
Denote the set of locations with one or more plants in sector s as Ns, the set of sectors
with one or more plants in location n by Sn, the set of locations where firm j has a plant
by Ej , the set of plants in location i by sj ∈ Ei, and the set of plants in location i and sector
s by j ∈ Eis. We refer to individual plants by their location-sector-firm tuple.21

4.2. Consumer Preferences

Workers are mobile and endowed with one unit of labor each that is inelastically sup-
plied. Worker ν working for plant {n� s� j} earns wage wnsj and derives utility from goods
consumption (Cν), land use (hν), and plant-level idiosyncratic amenities (bnsjν):

unsjν = bnsjνCα
ν h

1−α
ν � (2)

where α ∈ (0�1) and bnsjν is drawn from a multivariate Fréchet distribution given by

P

(⋂
n∈N

⋂
sj∈En

{bnsj ≤ tnsj}
)

= exp
{
−

∑
n∈N

(∑
sj∈En

(BnBs)
1

1−ρ t
− ε

1−ρ
nsj

)1−ρ}
� (3)

for all {tnsj}n∈N :sj∈En ∈ [0�∞)
∑
n∈N |En|. The amenity scale parameters Bn and Bs index the

average draws of idiosyncratic utility for plants in location n and sector s, respectively.
The amenity shape parameter ε > 1 controls the dispersion in idiosyncratic draws across
locations. The amenity correlation parameter ρ ∈ [0�1) controls the strength of the cor-
relation of within-location, across-plant idiosyncratic utility draws.

Consumers have Cobb–Douglas preferences over final goods from each sector:

Cν =
∏
s∈S
cκsνs � (4)

where cνs is the amount of sector s’s final good consumed by consumer ν.

21We take the structure of MC firms’ plant-level networks as given, consistent with the evidence in Sec-
tion 2.6 showing that these networks do not adjust in the response to the MDP openings. Modeling the choice
of number, size, and location of a firm’s plants in spatial equilibrium requires solving a complex combinatorial
choice problem. For recent advances, see, for example, Arkolakis, Eckert, and Shi (2023), who solved the plant
location choice problem when there are positive or negative complementarities between plants, and Oberfield,
Rossi-Hansberg, Sarte, and Trachter (2024), who solved the limit problem in which the firm chooses a density
rather than a discrete set of plants.
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4.3. Production Technology

Plants produce intermediate goods with technology qisj = zisjlisjγsmisj
1−γs , where zisj , lisj ,

and misj denote plant {i� s� j}’s productivity, labor, and materials, respectively. Materials
are a Cobb–Douglas aggregator of sectors’ final goods, misj = ∏

t∈S q
δst
isjt , where qisjt is the

total amount of sector t’s final good used in production by plant {i� s� j} and {δst}{s�t}∈S2

are input-output weights with
∑

t∈S δst = 1 ∀s ∈ S . We assume that plants are monopo-
listically competitive in goods markets—that is, they do not internalize their impact on
other plants’ prices nor their own impact on local price indices—and take all factor prices
as given, which implies that they set a constant net markup of μisj = 1

ω−1 over marginal
cost.22,23

Intermediate goods are tradable. Goods trade is subject to bilateral “iceberg” trade
costs such that τni ≥ 1 units must be shipped from location i in order for one unit to
arrive in location n. In our structural estimation, we parameterize trade costs as a constant
elasticity function of distance: τni = τin = distψni.

Final goods are nontradable. Each location has a representative final goods producer
for each sector. The final goods producer in sector s uses intermediate goods from all
plants in sector s as inputs into a nested CES production technology:

qnis = (
∑
j∈Eis

q
ω−1
ω

nisj )
ω
ω−1

(5)

and

qns =
(∑
i∈Ns

q
η−1
η

nis

) η
η−1

� (6)

where qnisj is the amount of plant {i� s� j}’s good used by the final goods producer in sector
s and location n, and qns is the total output of sector s’s final good in location n.

4.4. Knowledge and Productivity

We assume plants’ productivities depend on knowledge and endogenous agglomeration
economies that depend on local population size Li:

zisj = z̃isjkisjLβi � (7)

22Under our modeling assumptions, plants do not internalize their impact on either goods prices or wages.
In principle, we could allow for a limited degree of internalization. For example, we could allow plants to
internalize their impact on local price indices. While this adds complexity to the model, it would not materially
affect the estimation or counterfactuals. Likewise, we could allow for a limited degree of labor market power
under assumptions that maintain the tractability of Cobb–Douglas production by generating constant wage
markdowns below the marginal product of labor. While introducing such constant markdowns complicates
all expressions involving Cobb–Douglas production, they ultimately drop out when γs is calibrated to match
plants’ expenditure shares.

23We assume that plants rebate profits to consumers through a proportional dividend d such that a consumer

working at plant {i� s� j} has total income wisj (1+d) and d =
∑
n∈N

∑
sj∈En μnsj (

wnsj lnsj
γs

)∑
n∈N

∑
sj∈En wnsj lnsj

. While the dividend appears
in some formulas, such as aggregate welfare, this formulation ensures that it does not affect labor supply.



LOCAL PRODUCTIVITY SPILLOVERS 1607

where kisj is plant-specific knowledge, z̃isj is plant-specific fundamental productivity, and
Lβi represents classical, local agglomeration economies.24 We assume plants learn from
their neighbors, through local knowledge Ki, as well as from other plants in their firm
networks. Specifically, and building on Markusen (1984), we assume plants draw on firm-
wide shared knowledge (or “knowledge capital”) Kj . Plants’ knowledge is given by

kisj =K1−θ
i Kθ

j � (8)

where local knowledge Ki is an aggregator of plants’ knowledge in location i, Ki =
(
∑

sj∈Ei
kisj)ζ , and firm-wide knowledge Kj depends on local knowledge in all of the

firm’s locations, Kj = ∏
i∈Ej Ki.25 Note that inserting Kj = ∏

i∈Ej Ki in equation (8) yields
kisj =KiK

θ
j�−i, where Kθ

j�−i ≡
∏

n∈Ej\{i}Kn is an aggregator of knowledge in the firm’s other
locations. For example, if firm j has plants in locations 1 and 2, then plant {1� s� j}’s knowl-
edge is given by k1sj = K1K

θ
2 . Crucially, this implies that setting θ equal to zero in our

counterfactuals does not affect the weight on local knowledge in the plant’s knowledge
technology. Also, our knowledge technology implies that the impact of a local knowledge
shock on firm-wide knowledge is invariant to how many plants the firm has; it is moti-
vated by the fact that in our reduced-form global spillover analysis, the interaction term
between the MDP dummy and the number of the firm’s plants is insignificant.26 Finally,
for parsimony, our knowledge technology abstracts from certain aspects of heterogeneity
documented in Section 3. Specifically, Table VII shows that the global spillover varies at
the industry-pair level based on whether plants are in the same industry or in industries
linked through mutual R&D flows or mutual patent citations. Table A.III of Supplemen-
tal Appendix A shows similar results for the local spillover. While such heterogeneity
across industry pairs may be important for certain types of counterfactuals, it is unlikely
to have a material impact on the counterfactuals undertaken in Section 6.

For SC plants, equation (7) reduces to zisj = z̃isjKiL
β
i . In counties with only SC plants,

our productivity process is therefore similar to that in standard models with local agglom-
eration economies. By contrast, counties with MC plants are connected to other counties
through a knowledge-sharing network allowing for direct productivity spillovers across
locations. The key parameter which controls the strength of within-firm, across-location
spillovers is the global knowledge-sharing parameter θ. Ceteris paribus, a higher value
of θ puts more “weight” on knowledge in the firm’s other locations and thus generates
larger global spillovers in response to local knowledge shocks.27 The parameter ζ, on the
other hand, controls the strength of local knowledge spillovers across firms; it is critical in
pinning down local plants’ productivity responses to entry by the MDP.

24Plants’ output qisj is thus a function of labor and knowledge, as in Caliendo and Rossi-Hansberg (2012)
and Caliendo, Monte, and Rossi-Hansberg (2015).

25Table A.IV of Supplemental Appendix A shows that, in our reduced-form setting, both the local and global
productivity spillover increase with MDP size, consistent with our modeling assumption of knowledge values
being additive in the local knowledge index,

∑
sj∈Ei

kisj .
26In our global spillover regression (column (3) of Table III), interacting the MDP dummy with the log

number of the treated firm’s plants yields a coefficient of 0�020 (0�008) for the MDP dummy and −0�002
(0�004) for the interaction term (standard errors in parentheses).

27Our knowledge technology admits higher-order spillovers: local knowledge shocks spread to distant plants
through their firms’ networks (through Kj); from there, the shocks continue to spread to the (distant) plants’
local neighbors (through Ki), and so on.
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4.5. Solution to Consumer Problem

4.5.1. Goods and Housing

Consider consumer ν in location n. Standard Cobb–Douglas demand results imply that
cνspns = κsxν , where cνs is the amount of sector s’s final good consumed by consumer ν,
xν is the amount consumer ν spends on goods, and pns is the price of sector s’s final good
in location n. It follows that the local consumption price index is given by Pn = ∏

s∈S p
κs
ns .

We assume that land is inelastically supplied and owned by immobile landlords who
receive rents Rn from workers as income and consume their local consumption bundle
(see Monte, Redding, and Rossi-Hansberg (2018)). Equation (2) implies that consumers
spend a fraction (1 − α) of their income on land.28 Thus, total expenditure on land is the
product of average wages Wn, local population Ln, and the gross dividend (1 + d). Land
market clearing implies that equilibrium land rents are given by

Rn = (1 − α)
WnLn(1 + d)

Hn

� (9)

4.5.2. Location Choice and Welfare

Each worker chooses a plant that maximizes her utility. Worker ν’s indirect utility from
working for plant {n� s� j} is given by bnsjν

wnsj (1+d)

Pαn R
1−α
n

. In the spirit of McFadden (1978), worker
ν faces a nested choice; we can decompose this choice problem into a choice of location-
sector pair ns and, within a given location-sector pair, a choice of plant j ∈ Ens. Applying
results from Lind and Ramondo (2023), we show in Supplemental Appendix B.1 that the
labor share of location-sector pair ns is given by

Lns

L̄
=
BnB

1
1−ρ
s

((
W b
ns

) 1
1−ρ (W b

n

)− ρ
1−ρ

PαnR
1−α
n

)ε

∑
i∈N

Bi

(
W b
i

Pαi R
1−α
i

)ε � (10)

where the “amenity wages” W b
n and W b

ns are aggregators of plant-level wages:

W b
n :=

(∑
s∈Sn

B
1

1−ρ
s

(
W b
ns

) ε
1−ρ

) 1−ρ
ε

(11)

and

W b
ns :=

(∑
j∈Ens

w
ε

1−ρ
nsj

) 1−ρ
ε

� (12)

28See Davis and Ortalo-Magné (2011) for evidence in support of the constant housing expenditure share
implied by the Cobb–Douglas representation in equation (2).
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We show in Supplemental Appendix B.1 that within-location-sector (supply-side) labor
shares are given by

lSnsj

Lns
= w

ε
1−ρ
nsj∑

k∈Ens

w
ε

1−ρ
nsk

� (13)

where lSnsj represents labor supplied to plant {n� s� j} given plant-level wages {wnsk}k∈Ens .
Plants face an upward-sloping labor supply curve. To attract additional workers with
lower idiosyncratic preference draws, real wages wnsj/(PαnR

1−α
n ) must increase. When

plant {n� s� j}’s real wage increases, if ρ > 0, it attracts workers from both within location
n and other locations. As ρ→ 1, within-location preferences become perfectly correlated.

Finally, we show in Supplemental Appendix B.1 that average realized utility (or wel-
fare) is given by

Ū = (1 + d)�
(
ε− 1
ε

)[∑
n∈N

Bn

(
W b
n

PαnR
1−α
n

)ε] 1
ε

� (14)

where �(·) denotes the gamma function.

4.6. Solution to Producer Problem

4.6.1. Plant Production

We can decompose plant-level production decisions into within- and across-location-
sector production. We first show in Supplemental Appendix B.1 that within-location labor
demand in sector s satisfies

lDisj

Lis
= zω−1

isj w
γs (1−ω)−1
isj∑

k∈Eis

zω−1
isk w

γs (1−ω)−1
isk

� (15)

where Lis is total employment in location i and sector s and lDisj is total labor demand by
plant {i� s� j}.29

We next characterize across-location-sector production. Let p̃is be the Free on Board
price of one unit of the cost-minimizing bundle of intermediate goods from plants in
location i and sector s. Moreover, define the location-sector “productivity index”:30

MC is := ω

ω− 1

(∑
j∈Eis

(
wγs
isj

zisjW
γs
is

)1−ω) 1
1−ω
� (16)

29Equation (15) implies that labor demand is strictly greater than zero, which ensures that all plants produce
in equilibrium. This differs from models of granular firms in international trade (e.g., Eaton, Kortum, and
Sotelo (2012), Gaubert and Itskhoki (2021)), where only a subset of firms produces in equilibrium. In our
(domestic) setting, it is crucial that all plants produce in equilibrium in order to mimic the economic footprints
of plant-level networks in the Census data.

30While the formula for MCis includes relatives wages, those are, in equilibrium, solely a function of pro-
ductivity; hence the name “productivity index”.
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We show in Supplemental Appendix B.1 that, in equilibrium, the Free on Board Price
satisfies

p̃is =MC isW γs
is

(
pmis

)1−γs
� (17)

where pmis = ∏
t∈S p

δst
it is the materials price index.

4.6.2. Final Goods Production

Local aggregate demand for final goods consists of demand from local consumers, local
landlords, and local plants. Cobb–Douglas production and consumption imply that local
aggregate demand for final goods satisfies

qnspns =
∑
jt∈En

wntjlntj

(
κs(1 + d) + δts 1 − γt

γt

)
� (18)

Also, CES demand results imply that the final goods price index is given by

pns =
(∑
i∈Ns

(τnip̃is)1−η
) 1

1−η
� (19)

Moreover, they imply that final goods producers in location n have expenditure shares

Xnis

Xns

=
(
p̃isτni

pns

)1−η
� (20)

where Xns is total expenditure and Xnis is expenditure on intermediate goods from loca-
tion i. Combining equations (18) and (20) with Cobb–Douglas production, imposing that
plant-level revenue equals plant-level income from sales, substituting in markups, and
summing over all plants in sector s and region n gives

Wnslns

γs

ω

ω− 1
=

∑
i∈N

∑
t∈Si

WitLit

(
p̃isτni

pns

)1−η(
κs(1 + d) + δts 1 − γt

γt

)
� (21)

4.7. General Equilibrium

Define the following endogenous objects: plant-level knowledge k := {knsj}n∈N :js∈En ,
within-location-sector labor shares l := {

lnsj

Lns
}n∈N :s∈Sn:j∈Ens , within-location-sector rela-

tive wages w := {
wnsj

Wns
}n∈N :s∈Sn:j∈Ens , county-sector level labor L := {Lns}n∈N :s∈Sn , county-

sector level average wages W := {Wns}n∈N :s∈Sn , and county-level average wages W n :=
{Wn}n∈N . Moreover, define the following exogenous fundamentals: land endowments
H := {Hn}n∈N , amenity scale parameters B := {{Bn}n∈N �{Bs}s∈S}, plant-level funda-
mental productivity z := {z̃isj}i∈N :js∈Ei , plant-level networks E := {Ei}i∈N , and bilateral
trade costs τ := {τni}{n�i}∈N 2 . Finally, define the set of “sectoral parameters” � :=
{{κs�γs}s∈S�{δst}{s�t}∈S2}.

We are ready to characterize equilibria of our model. Equilibrium knowledge, labor al-
locations, and wages, {k�l�w�L�W}, are pinned down by equation (8) (knowledge equi-
librium condition), (13) and (15) (within-location-sector equilibrium conditions), and
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(10) and (21) (across-location-sector equilibrium conditions).31 Further, if {k� l�w�L�W}
solves all five equations, there exists a unique equilibrium with those knowledge values,
labor allocations, and wages and, given fundamentals {H�B�z�E �τ}, we can recover the
equilibrium values of all endogenous objects in closed form. We thus refer to equilibria
by their corresponding knowledge values, labor allocations, and wages, {k� l�w�L�W}.

PROPOSITION 1: Given parameter values {α�β�ε� ζ�η�θ�ρ�ω��} and fundamentals
{H�B�z�E �τ}, and given parametric restictions, there exists a unique vector {k� l�w} which
is consistent with an equilibrium of the model.

PROOF: See Supplemental Appendix B.2.32 Q.E.D.

Using Proposition 1, we show in Supplemental Appendix B.2 that plant-level knowledge
and fundamental productivity, {k�z}, uniquely aggregate into a location-sector productiv-
ity index that enters into the across-location-sector equilibrium conditions and thereby
pins down {L�W}. Furthermore, we show in Supplemental Appendix B.2 that the across-
location-sector equilibrium conditions are isomorphic to corresponding conditions in a
version of Caliendo and Parro (2015) augmented with mobile labor across regions, id-
iosyncratic preferences over locations and sectors, a land market, and classical, local ag-
glomeration economies.

4.8. Model Inversion

The following proposition shows that the model can be inverted to recover unique (up
to a normalization) values of {B�z} and {k�w�W} that are consistent with the observed
distribution of economic activity.

PROPOSITION 2: Given parameter values {α�β�ε� ζ�η�θ�ρ�ω��}, fundamentals {H�E �
τ}, and observed data {l�L�W n}, and given parametric restrictions, there exist unique (up
to a normalization) unobserved fundamentals {B�z} and plant-level knowledge and wages
{k�w�W} that rationalize the data as an equilibrium of the model.

PROOF: See Supplemental Appendix B.2.33 Q.E.D.

5. STRUCTURAL ESTIMATION

5.1. Model Economy

We simulate an economy with a large number of locations, plants, and firms that mirrors
the geography of production networks in U.S. Census data. Each location corresponds to
a specific county. We assign each county its actual geographical coordinates, land area,
manufacturing employment and wages, and number of plants in each sector using 1982

31The knowledge equilibrium condition (8) is pinned down by firms’ plant-level networks, rather than by
firms’ production choices. That said, for expositional simplicity, we include the knowledge equilibrium condi-
tion in the full set of model equilibrium conditions rather than defining a separate condition for a knowledge
fixed point.

32We use results from Allen, Arkolakis, and Li (2022) to derive the parametric conditions in Proposition 1.
These conditions hold in the model economy in Section 5 under the estimated parameter values.

33The parametric restrictions in Proposition 2 are the same as in Proposition 1.
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Census data.34 Sectors are based on 2-digit SIC code manufacturing industries. We assign
plants to firms based on the joint distribution of firm size and spatial dispersion in firms’
plant-level networks. We provide more details in Supplemental Appendix C.1.

5.2. Parameters and Identification

We divide the parameters into two sets. The first set consists of parameters which we
calibrate using additional data and values from the literature. We set the expenditure
share on housing, 1−α, equal to 0.3 to match the BLS Consumer Expenditure Survey, the
elasticity of trade costs to distance,ψ, equal to 1�29/(η−1) to match the elasticity of trade
flows to distance in Monte, Redding, and Rossi-Hansberg (2018), and the elasticity of
local firm productivity to agglomeration, β, equal to 0.023 (Gaubert (2018)).35 Finally, we
set the sectoral parameters� equal to consumption and input-output weights in the BEA
Input-Output Accounts data and value-added shares from the NBER CES Manufacturing
Industry database.

The second set of parameters, {ζ�θ�η�ε�ω�ρ}, consists of parameters which we
estimate by targeting all six central moments from our reduced-form analysis: semi-
elasticities of plant-level employment, wages, and productivity with respect to the MDP
openings, both for local and distant plants. To obtain model-based estimates that corre-
spond to these reduced-form estimates, we simulate the 47 MDP openings in our model
economy and compute the new equilibrium. This procedure provides us with a plant-level
data set consisting of “pre-” and “post-MDP opening” observations, allowing us to esti-
mate plant-level difference-in-differences regressions that mirror those in our reduced-
form analysis. We provide further details in Supplemental Appendix C.2.

There is a tight link between the structural parameters and the economic forces that
govern the productivity, employment, and wage responses to the MDP openings in our
model. First, the local knowledge-sharing parameter ζ governs the magnitude of the local
productivity spillover; given the local spillover, the global knowledge-sharing parameter θ
pins down the value of the global productivity spillover. Second, the parameters η and ε
control the across-region-sector labor demand and supply elasticities, respectively. Given
the magnitudes of the productivity spillovers, η and ε thus primarily influence the local
employment and wage responses. Finally, the parameters ω and ρ pin down the within-
region-sector labor demand and supply elasticities, respectively; in our model, this implies
ω and ρ jointly control the global employment and wage responses.

5.3. Estimation

Our estimation targets all six central moments from our reduced-form analysis: the
local productivity response (Table II, column (1)), the local employment and wage re-
sponses (Table IV, columns (1) and (2)), the global productivity response (Table III, col-
umn (3)), and the global employment and wage responses (Table IV, columns (3) and
(4)). As our model is just identified, the difference-in-differences regression coefficients
from our estimated model exactly match the corresponding reduced-form coefficients.

Our estimated parameter values are informative about key economic forces in our
model. As for the local and global knowledge-sharing parameters, we obtain estimates

34We use data from 1982 to ensure that the MDPs are not included in the baseline economy.
35Given this value of beta, the inclusion of classical, local agglomeration economies in our model is largely

immaterial. Without those, our model can still match all six reduced-form moments exactly with only minimal
changes to the parameter values.
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of ζ̂ = 0�046 (0.012) and θ̂ = 0�63 (0.20), respectively (GMM standard errors in paren-
theses). Thus, we can comfortably reject the null of no inter- or intra-firm knowledge
sharing. As for the parameters controlling across-region-sector labor demand and supply,
our estimates are η̂= 3�3 (0.76) and ε̂= 3�4 (1.4), respectively. Hence, we cannot reject
the null that η = 4 (e.g., Bernard, Eaton, Jensen, and Kortum (2003), Broda and Wein-
stein (2006), Redding (2016)) or ε= 3 (e.g., Redding (2016), Bryan and Morten (2019)).
Finally, as for the parameters controlling within-region-sector labor demand and supply,
we obtain estimates of ω̂ = 2�1 (0.40), indicating relatively inelastic labor demand, and
ρ̂= 0�57 (0.35), indicating highly, albeit not perfectly, elastic labor supply.

6. COUNTERFACTUALS

6.1. Propagation Forces

In our first counterfactual, we quantify the aggregate effects of the 47 MDP openings
under various assumptions about the underlying propagation forces. There are two main
propagation forces in our model: input-output linkages and within-firm, across-location
(“global”) knowledge sharing.36 In our model, we can turn input-output forces off by set-
ting the parameter vector γs to 1 and turn global knowledge sharing off by setting the
parameter θ to zero. In this first counterfactual, we either turn both forces off, turn only
input-output forces on, turn only global knowledge sharing on, or turn both forces on. We
hold all other parameters at their estimated or calibrated values and follow the steps in
our estimation procedure described in Section 5.

While MDP openings constitute large regional shocks, they constitute relatively small
shocks at the aggregate level. When both propagation forces are turned off, aggregate
welfare increases by 0.0038%. When only global knowledge sharing or only input-output
forces are turned on, the welfare gains increase by a factor of 2.35 and 2.96, respectively.
Hence, global knowledge sharing and input-output linkages have roughly similar amplifi-
cation effects. However, the two forces also interact in meaningful ways. When both forces
are turned on, the welfare gains increase by a factor of 6.94, which is almost double the
two marginal effects combined (594% vs. 135% + 196%). Intuitively, input-output forces
amplify the welfare gains from increases in productivity, including productivity increases
due to global spillovers.

6.2. Plant Openings and Regional Development

Opening a large industrial plant can have a significant impact on a region, especially for
smaller and less developed regions. It can boost employment, raise productivity, and spur
industrial activity. In extreme cases, it can help a lagging economy escape a “poverty trap”
equilibrium (Kline (2010)). However, in the data, winner counties are seldom small or un-
derdeveloped: compared to the rest of the economy (but not compared to the runner-up
counties), they have higher incomes and income growth, higher population and popula-
tion growth, and a higher share of labor in manufacturing (GHM (2010)). Indeed, 40 of
the 47 MDP counties in our data are either in the highest or second highest population
quintile.

36While input-output linkages are not the main source of the local productivity spillover (see Section 3),
they can amplify the local productivity spillover and thereby have significant aggregate effects.
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If industrial plants tend to locate in regions that are already well developed, the ques-
tion is whether the government should intervene to aid less developed regions.37 To inform
this policy debate, we randomly assign MDP openings to more or less developed regions
and study their local impact as well as their impact on the rest of the economy. We always
use the same MDP; it is a representative MDP based on plant size and industry from
the set of 47 MDP openings. We proxy for regional development using population size.
Specifically, we sort counties into population quintiles and assign the MDP to a 10% ran-
dom sample of counties from each quintile. Sorting by population divides counties into
rural versus urban areas. Also, population is highly correlated with income, manufactur-
ing employment, and other measures of regional development. To ensure that our results
are not driven by outlier counties with excessively high MDP employment shares, we re-
quire that the MDP’s county-industry employment share lies within the 95th percentile
of its empirical distribution based on the 47 MDP counties. This eliminates extremely ru-
ral counties with no, or hardly any, pre-existing employment in the MDP’s industry. As
in our first counterfactual, we turn global knowledge sharing on and off; otherwise, we
follow the estimation procedure described in Section 5.

Figure 2 shows the impact of an MDP opening on real value added (VA), defined as
the (inflation-adjusted) value of output minus the cost of materials.38 In Panel A, the red
bars show the local impact on plants in the MDP county (excluding the MDP itself); the
blue bars show the impact on plants in the rest of the economy.39 A light (dark) color
indicates that global knowledge sharing is turned off (on). As the MDP opening has a
stronger relative impact on the MDP county than on the rest of the economy, we use
separate Y -axes for the MDP county (left) and the rest of the economy (right). To study
the role of regional development, we show results separately for each population quintile.
In the lowest quintile, the MDP opens in a less developed region; in the highest quintile,
it opens in a well-developed region.

As is shown in Panel A, the local impact of the MDP opening is declining in the level
of regional development of the MDP county. In our model, less developed regions have a
lower stock of knowledge (recovered from the data), so the relative gain in productivity,
and ultimately in real VA, at local incumbent plants is higher in these regions. This is
true regardless of whether global knowledge sharing is turned on. In fact, it makes little
difference if global knowledge sharing is turned on: the general equilibrium (feedback)
effect of global knowledge sharing on the MDP county is small, which is why the light and
dark red bars are practically identical.

In stark contrast, turning on global knowledge sharing makes a big difference for the
impact of the MDP opening on the rest of the economy. When global knowledge sharing
is turned off, the MDP opening causes a decline in real VA in the rest of the economy;
this is the familiar result that local investment policies can have negative effects on other
regions. By contrast, when global knowledge sharing is turned on, real VA in the rest of

37One example of a policy proposal toward this goal consists of national government interventions in local
governments’ subsidies to firms; see Slattery and Zidar (2022) for a review of local subsidy policies.

38As is common in spatial models with labor mobility and Fréchet preferences over locations, in our model,
ex ante welfare—that is, worker-level expected utility prior to the realization of idiosyncratic Fréchet draws—
is equalized across regions in equilibrium. For this reason, we focus on real VA as a meaningful and policy-
relevant measure of the heterogeneous regional effects of large plant openings.

39The local impact captures spillovers from the MDP opening on incumbent plants as well as any general
equilibrium effects on those plants. We exclude the MDP itself from the local impact because it scales with the
size of the local economy in a way that is mechanical: adding an MDP of a given size to a “small” county (in
terms of real VA) has a larger relative effect than does adding the same MDP to a “large” county.
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FIGURE 2.—Plant openings and regional development. This figure shows the percent change in real value
added (VA) from MDP openings in more or less developed regions. MDPs are randomly assigned to counties
sorted into population quintiles. In Panel A, the red bars show the local impact on the MDP county; the blue
bars show the impact on the rest of the economy. A light (dark) color indicates that global knowledge sharing
(GKS) is turned off (on). The left Y -axis pertains to the MDP county; the right Y -axis pertains to the rest of
the economy. In Panel B, the (blue) bars show the aggregate impact on the entire economy. The MDP itself is
excluded from both the local and aggregate impact.

the economy increases: the MDP opening now (also) raises the productivity of plants in
distant regions, which are connected to the MDP county through plant-level (knowledge-
sharing) networks. Moreover, the gains in the rest of the economy are increasing in the
level of regional development of the MDP county: more developed regions have more
MC plants and thus more plant-level network connections with other regions.40

40Regional development may also correlate with other forces in the model, such as input-output linkages.
However, when we turn global knowledge sharing off, all those other forces remain the same, yet the positive
effect of regional development disappears (light blue bars). Hence, we conclude that the positive effect of
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Panel A of Figure 2 illustrates the ambiguous role of regional development. On one
hand, the impact of the MDP opening on the local economy is stronger when the MDP
county is less developed. On the other hand, with global knowledge sharing turned on,
the positive effect on the rest of the economy is stronger when the MDP county is well
developed. Panel B shows the aggregate effect on the MDP county (excluding the MDP
itself) and the rest of the economy combined when global knowledge sharing is turned
on. As can be seen, the pattern is similar to that in Panel A for the rest of the economy.
Intuitively, the MDP county is small relative to the rest of the economy; the impact on
the latter therefore dominates. Precisely, if the MDP opens in a less developed region
(lowest quintile), aggregate real VA increases by 0.006%. In contrast, if the MDP opens
in a well-developed region (highest quintile), aggregate real VA increases by 0.036%.
Thus, the aggregate gains are greatest if the MDP opens in a well-developed region—
which is connected to other regions through plant-level (knowledge-sharing) networks—
consistent with the observed location choices of the MDPs in the data.

7. CONCLUSION

The gains from agglomeration economies are thought to be highly localized. In this
paper, we show that local productivity spillovers can propagate through the entire econ-
omy through the plant-level networks of multi-region firms. Specifically, building on the
empirical framework in GHM, we show that large industrial plant openings raise the pro-
ductivity not only of local incumbent plants but also of distant plants hundreds of miles
away, which belong to large multi-plant, multi-region firms that are exposed to the local
productivity spillover through one of their plants. Consistent with a knowledge-sharing
channel, this “global” productivity spillover does not decay with distance and is stronger
if plants are in industries that share knowledge with each other.

To quantify the significance of firms’ plant-level networks for the propagation and am-
plification of local productivity shocks, we develop and estimate a quantitative spatial
model in which plants of multi-region firms are linked through shared knowledge. In our
estimated model, input-output linkages and within-firm, across-region (“global”) knowl-
edge sharing have quantitatively similar effects. We finally use our estimated model to
study the implications of regional development for the impacts of large industrial plant
openings. While large industrial plant openings have a greater local impact in less devel-
oped regions, the aggregate gains are greatest when the plants locate in well-developed
regions, which are connected to other regions through firms’ plant-level (knowledge-
sharing) networks.
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have the right to republish them. They were also granted an exemption from publishing parts of their code, because
the terms of use of their the data does not allow them to share information on some of the variables. The journal
checked the public parts of the replication package for their ability to reproduce the results in the paper and approved
online appendices. The replication package contains information on how authors can obtain access to the original
data and code, archived by the data provider for a period of at least 10 years. During that time, authors commit
to assist users who, having obtained access to the confidential part of the package, may have trouble reproducing
the results generated from the confidential data and codes. Given the highly demanding nature of the algorithms,
the reproducibility checks were run on a simplified version of the code, which is also available in the replication
package.
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