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Abstract

Jia and Zhou (2023, Journal of Machine Learning Research, 24(161), 1-61) introduce the no-
tion of “q-function” for continuous-time reinforcement learning and characterize q-function
and value function by martingale conditions involving action processes that are sampled
from the underlying stochastic policy continuously. However, there is a subtle measurabil-
ity issue in such a continuum independent sampling. This erratum resolves this measure-
theoretical issue and provides corrected statements and proofs of the main results in Jia and
Zhou (2023). The algorithms and numerical studies in the original paper are not impacted.
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1 Introduction

Jia and Zhou (2023, Journal of Machine Learning Research, 24(161), 1-61) introduce the q-
function for continuous-time reinforcement learning (RL) with controlled diffusion processes,
and provide martingale characterizations for learning the q-function and the value function
in a data-driven fashion. An implicit assumption in Jia and Zhou (2023) is the possibility of
continuum independent sampling from a given admissible feedback policy π. More precisely,
at any time–state pair (t, x), the agent generates an action at ∼ π(·|t, x), and then applies
this action to the environment instantaneously. This procedure leads to the time–state–
action–reward sequences (all continuous-time processes) {s,Xs, as, rs : 0 ≤ s ≤ T} that
satisfy

dXs = b(s,Xs, as)ds+ σ(s,Xs, as)dWs,

where

as ∼ π(·|s,Xs), rs = r(s,Xs, as), ∀s ∈ [0, T ].

1.1 Measure-Theoretical Issue with Continuum Sampling

The above sampling procedure requires continuum independent draws from a non-degenerate
distribution, for which Jia and Zhou (2023) refer to the Fubini extension framework of Sun
(2006) that shows it is possible to extend the Lebesgue measure (in t) to accommodate
“essentially pairwise independent” continuum random variables. However, there is a gap
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in this treatment. Theoretically, the resulting action process {as : 0 ≤ s ≤ T} needs

to be progressively measurable for the integral
∫ T
0 b(t,Xt, at)dt and the stochastic integral∫ T

0 σ(t,Xt, at)dWt to be well defined. However, Szpruch et al. (2024, Remark 2.1) and
Bender and Thuan (2024, Section 3) point out that it is not the case in general.

While this represents a very delicate technical gap, the theoretical results in Jia and
Zhou (2023) are so important that we believe an erratum is warranted.

1.2 Discretely Sampled Processes

Szpruch et al. (2024); Bender and Thuan (2024); Jia et al. (2025) all propose using (different
versions of) time-discretely sampled action processes to overcome the measurability issue.
In this erratum, we take the recent framework of Jia et al. (2025).

Consider another probability space (Ωξ,Fξ,Pξ) and a measurable function ϕ : [0, T ] ×
Rd×Ωξ → A such that for all (t, x) ∈ [0, T ]×Rd, the A-valued random variable ϕ(t, x, ξ) has
the distribution π(·|t, x). Let N0 = N ∪ {0} and let (Ωξn ,Fξn ,Pξn , ξn)n∈N0 be independent
copies of (Ωξ,Fξ,Pξ, ξ). Consider a probability space of the following form:

(Ω,F ,P) :=
(
ΩW ×

∞∏
n=0

Ωξn ,FW ⊗
∞⊗
n=0

Fξn ,PW ⊗
∞⊗
n=0

Pξn

)
, (1)

where (ΩW ,FW ,PW ) is the probability space where the Brownian motion (representing
the environmental noises) lives, and for each n ∈ N0, (Ω

ξn ,Fξn ,Pξn) supports the random
variable ξn used to generate the random actions. Moreover, we define the filtration Ft :=
σ{(Ws)s≤t, (ξi)ti≤t}, which is right continuous and satisfies the usual condition.

Given an admissible feedback policy π (see Jia and Zhou 2023, Definition 1 for the
precise definition), denoted by π ∈ Π, and (t, x) ∈ [0, T )× Rd, consider a time grid Gt:T =
{t = s0 < s1 < . . . < sn = T} of [t, T ]. We sample actions from π only at the grid points in
Gt:T . The corresponding state process satisfies, for all i = 0, . . . , n− 1 and all s ∈ [si, si+1],

Xs = Xsi +

∫ s

si

b(u,Xu, asi)du+

∫ s

si

σ(u,Xu, asi)dWu, with asi = ϕ(si, Xsi , ξi), (2)

which will be referred henceforth to as the discretely sampled state process.1 Jia et al. (2025,
Lemma 3.1) show that (2) is a well-posed SDE whose solution has a continuous trajectory
and is adapted to a smaller filtration Gs := σ{(Wu)u≤s, (ξi)si<s}. In addition, the action
process as =

∑n−1
i=0 1{s∈[si,si+1)}asi is a simple process that is adapted to Fs.

In the following, we denote by aG ,π the resulting action process and by XG ,π the solution
to (2), given Xt = x, associated with the policy π and the grid Gt:T . For simplicity, we may
also rewrite (2) as

dXs = b(s,Xs, aδ(s))ds+ σ(s,Xs, aδ(s))dWs, s ∈ [t, T ]; Xt = x (3)

with δ(s) = si for s ∈ [si, si+1), and as = aδ(s) given in (2).

1. The term “discretely” here is slightly misleading as the state process {Xs, t ≤ s ≤ T} itself is still
continuous in time s. It is the action that is sampled discretely in time from the policy π.
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2 Martingale Characterizations for q-Learning with Discretely Sampled
Processes

We will now state and prove the revised martingale characterizations for q-learning, orig-
inally presented in Jia and Zhou (2023), in terms of the discretely sampled state–action
processes defined in (3). Note that the definition of the q-function is solely based on the
“exploratory problem” (the equations (8) and (9) in Jia and Zhou 2023) and, hence, is
independent of any discrete sampling. Moreover, the value function, J(·, ·;π), of a policy
π ∈ Π is now also based on the exploratory problem, i.e. the equation (9) in Jia and Zhou
(2023).2 However, we will prove that Theorems 6, 7, 9, and 12 in Jia and Zhou (2023) are
all valid when “(Xπ, aπ)” therein (which are not rigorously defined due to the measurability
issue) is replaced by “(XG ,π, aG ,π)” with any given time grid.

In the following, for reader’s convenience, we label the theorems with the same numbers
corresponding to those in the original paper Jia and Zhou (2023). For example, Theorem 6
here is the revision of Theorem 6 therein.

The first theorem characterizes the q-function of a given admissible policy, assuming its
value function is accessed.

Theorem 6 Let a policy π ∈ Π, its value function J and a continuous function q̂ : [0, T ]×
Rd ×A → R be given. Then

(i) q̂(t, x, a) = q(t, x, a;π) for all (t, x, a) ∈ [0, T ] × Rd × A if and only if for all (t, x) ∈
[0, T ]× Rd and any time grid Gt:T on [t, T ], the following process

e−βsJ(s,XG ,π
s ;π) +

∫ s

t
e−βu[r(u,XG ,π

u , aG ,π
u )− q̂(u,XG ,π

u , aG ,π
u )]du (4)

is an ({Fs}s≥0,P)-martingale, where {XG ,π
s , t ≤ s ≤ T} is the solution to (3) under

π with XG ,π
t = x.

(ii) If q̂(t, x, a) = q(t, x, a;π) for all (t, x, a) ∈ [0, T ]×Rd ×A, then given any π′ ∈ Π, for
all (t, x) ∈ [0, T ]× Rd and any time grid Gt:T on [t, T ], the following process

e−βsJ(s,XG ,π′
s ;π) +

∫ s

t
e−βu[r(u,XG ,π′

u , aG ,π′
u )− q̂(u,XG ,π′

u , aG ,π′
u )]du (5)

is an ({Fs}s≥0,P)-martingale, where {XG ,π′
, t ≤ s ≤ T} is the solution to (3) under

π′ with initial condition XG ,π′

t = x.

(iii) If there exists π′ ∈ Π such that for all (t, x) ∈ [0, T ] × Rd and any time grid Gt:T

on [t, T ], (5) is an ({Fs}s≥0,P)-martingale with initial condition XG ,π′

t = x, then
q̂(t, x, a) = q(t, x, a;π) for all (t, x, a) ∈ [0, T ]× Rd ×A.

2. In Jia and Zhou (2023), the value function is first defined on the continuously sampled control and
state processes (see (7) therein), and then argued to be equivalent to the one based on the exploratory
problem. The equation (7) in Jia and Zhou (2023) has the same measurability issue, but can be replaced
by discretely sampled processes. Jia et al. (2025) show that the total expected reward under the discretely
sampled policy converges to the value function (defined based on the exploratory problem) as the grid
size tends to zero.
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Moreover, in any of the three cases above, the q-function satisfies∫
A

[
q(t, x, a;π)− γ logπ(a|t, x)

]
π(a|t, x)da = 0, ∀(t, x) ∈ [0, T ]× Rd. (6)

Proof The proof of (6) is the same as that in Jia and Zhou (2023). It suffices to show (i)
to (iii). For simplicity, denote

LaV (t, x) :=
∂V

∂t
(t, x) + b(t, x, a) ◦ ∂V

∂x
(t, x) +

1

2
σσ⊤(t, x, a) ◦ ∂2V

∂x2
(t, x).

(i) First of all, we apply Itô’s lemma to (3) to obtain

e−βsJ(s,XG ,π
s ;π) +

∫ s

t
e−βu

[
r(u,XG ,π

u , aG ,π
u )− q̂(u,XG ,π

u , aG ,π
u )

]
du

=e−βtJ(t, x) +

∫ s

t
e−βu

[
LaG ,π

δ(u)J(u,XG ,π
u )− βJ(u,XG ,π

u ) + r(u,XG ,π
u , aG ,π

δ(u))− q̂(u,XG ,π
u , aG ,π

δ(u))

]
du

+

∫ s

t
e−βu∂J

∂x
(u,XG ,π

u )σ(u,XG ,π
u , aG ,π

δ(u))dWu

=e−βtJ(t, x) +

∫ s

t
e−βu

[
q(u,XG ,π

u , aG ,π
δ(u);π)− q̂(u,XG ,π

u , aG ,π
δ(u))

]
du

+

∫ s

t
e−βu∂J

∂x
(u,XG ,π

u )σ(u,XG ,π
u , aG ,π

δ(u))dWu.

If q̂(t, x, a) = q(t, x, a;π), then it follows from the moment estimates in Jia et al. (2025,
Lemma 3.1) for the dicretely sampled state process XG ,π that (4) is a martingale.

Conversely, if (4) is a martingale, then∫ s

t
e−βu

[
q(u,XG ,π

u , aG ,π
δ(u);π)− q̂(u,XG ,π

u , aG ,π
δ(u))

]
du

is a martingale for all initial (t, x) and any given time grid Gt:T . The same argument
in Jia and Zhou (2023), i.e., a martingale with zero quadratic variation has to be a
constant, yields that P-almost surely,∫ s

t
e−βu

[
q(u,XG ,π

u , aG ,π
δ(u);π)− q̂(u,XG ,π

u , aG ,π
δ(u))

]
du = 0

for all s ∈ [t, T ]. Denote f(t, x, a) = q(t, x, a;π) − q̂(t, x, a). We prove f ≡ 0 by
contradiction by assuming that there exists a triple (t∗, x∗, a∗) ∈ [0, T )× Rd ×A and
ϵ > 0 such that f(t∗, x∗, a∗) > ϵ. Because f is continuous, there exists δ > 0 such that
f(u, x′, a′) > ϵ/2 for all (u, x′, a′) with |u− t∗| ∨ |x′ − x∗| ∨ |a′ − a∗| < δ. Here “∨” is
the maximum operator, i.e., u ∨ v = max{u, v}.
Now consider a discretely sampled state process, still denoted by XG ,π, starting from
(t∗, x∗) with a time grid Gt:T satisfying t∗ = t0 < t∗ + δ < t1 < · · · . Define

τ = inf{u ≥ t∗ : |u−t∗| > δ or |XG ,π
u −x∗| > δ} = inf{u ≥ t∗ : |XG ,π

u −x∗| > δ}∧(t∗+δ),
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where “∧” denotes the minimum operator, i.e., u ∧ v = min{u, v}. The continuity of
XG ,π implies that τ > t∗, P-almost surely.

We have already proved that there exists Ω0 ∈ F with P(Ω0) = 0 such that for all

ω ∈ Ω \ Ω0,
∫ s
t∗ e

−βuf(u,XG ,π
u (ω), aG ,π

δ(u)(ω))du = 0 for all s ∈ [t∗, T ]. It follows from

Lebesgue’s differentiation theorem that for any ω ∈ Ω \ Ω0,

f(s,XG ,π
s (ω), aG ,π

δ(s)(ω)) = 0, a.e. s ∈ [t∗, τ(ω)]. (7)

On the other hand, for the grid chosen above, for any s ∈ [t∗, τ(ω)] ⊂ [t∗, t∗ + δ],

aG ,π
δ(s)(ω) = aG ,π

t∗ (ω) = ϕ(t∗, x∗, ξ0(ω)). Recall the definition of the admissible policy

(Definition 1-(i) in Jia and Zhou 2023), we have

P(ϕ(t∗, x∗, ξ0(ω)) ∈ Bδ(a
∗)) =

∫
Bδ(a∗)

π(a|t∗, x∗)da > 0,

where Bδ(a
∗) = {a′ ∈ A : |a′ − a∗| < δ} is a neighborhood of a∗. Hence there exists

ω ∈ Ω \ Ω0 such that for every s ∈ [t∗, τ(ω)],

f(s,XG ,π
s (ω), aG ,π

δ(s)(ω)) = f(s,XG ,π
s (ω), ϕ(t∗, x∗, ξ0(ω))) >

ϵ

2
> 0,

contradicting (7). This proves that q(t, x, a;π) = q̂(t, x, a) for every (t, x, a).

(ii) The proof is parallel to the first part of the proof of (i).

(iii) The proof is parallel to the second part of the proof of (i).

The next result underpins both on-policy and off-policy RL algorithms for learning the
value function and the q-function jointly.

Theorem 7 Let a policy π ∈ Π, a function Ĵ ∈ C1,2
(
[0, T ) × Rd

)
∩ C

(
[0, T ] × Rd

)
with

polynomial growth, and a continuous function q̂ : [0, T ]× Rd ×A → R be given satisfying

Ĵ(T, x) = h(x),

∫
A

[
q̂(t, x, a)− γ logπ(a|t, x)

]
π(a|t, x)da = 0, ∀(t, x) ∈ [0, T ]× Rd. (8)

Then

(i) Ĵ and q̂ are respectively the value function and the q-function associated with π if and
only if for all (t, x) ∈ [0, T ]×Rd and any time grid Gt:T on [t, T ], the following process

e−βsĴ(s,XG ,π
s ) +

∫ s

t
e−βu[r(u,XG ,π

u , aG ,π
u )− q̂(u,XG ,π

u , aG ,π
u )]du (9)

is an ({Fs}s≥0,P)-martingale, where {XG ,π
s , t ≤ s ≤ T} is the solution to (3) under

π with XG ,π
t = x.
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(ii) If Ĵ and q̂ are respectively the value function and the q-function associated with π,
then given any π′ ∈ Π, for all (t, x) ∈ [0, T ]×Rd and any time grid Gt:T on [t, T ], the
following process

e−βsĴ(s,XG ,π′
s ) +

∫ s

t
e−βu[r(u,XG ,π′

u , aG ,π′
u )− q̂(u,XG ,π′

u , aG ,π′
u )]du (10)

is an ({Fs}s≥0,P)-martingale, where {XG ,π′
s , t ≤ s ≤ T} is the solution to (3) under

π′ with XG ,π′

t = x.

(iii) If there exists π′ ∈ Π such that for all (t, x) ∈ [0, T ] × Rd and any time grid Gt:T on

[t, T ], (10) is an ({Fs}s≥0,P)-martingale, where {XG ,π′
s , t ≤ s ≤ T} is the solution to

(3) under π′ with XG ,π′

t = x, then Ĵ and q̂ are respectively the value function and the
q-function associated with π.

Moreover, in any of the three cases above, if it holds further that π(a|t, x) =
exp{ 1

γ
q̂(t,x,a)}∫

A exp{ 1
γ
q̂(t,x,a)}da ,

then π is the optimal policy and Ĵ is the optimal value function.

Proof

(i) We only prove the “only if” part because the “if” part is straightforward following the
same argument as in the proof of Theorem 6.

Define r̂(t, x, a) := LaĴ(t, x)− βĴ(t, x) and consider the process

Ms = e−βsĴ(s,XG ,π
s )−

∫ s

t
e−βur̂(u,XG ,π

u , aG ,π
u )du.

By applying Itô’s lemma and arguing similarly to the first part of the proof of Theorem
6-(i), we obtain thatMs is an ({Fs}s≥0,P)-martingale. As a result,

∫ s
t e−βu[r(u,XG ,π

u , aG ,π
u )−

q̂(u,XG ,π
u , aG ,π

u ) + r̂(u,XG ,π
u , aG ,π

u )]du is an ({Fs}s≥0,P)-martingale. The same argu-
ment as in the second part of the proof of Theorem 6-(i) applies, yielding

q̂(t, x, a) =r(t, x, a) + r̂(t, x, a)

=LaĴ − βĴ(t, x) + r(t, x, a)

=
∂Ĵ

∂t
(t, x) +H

(
t, x, a,

∂Ĵ

∂x
(t, x),

∂2Ĵ

∂x2
(t, x)

)
− βĴ(t, x)

for every (t, x, a). Now the constraint (8) reads∫
A

[
∂Ĵ

∂t
(t, x) +H

(
t, x, a,

∂Ĵ

∂x
(t, x),

∂2Ĵ

∂x2
(t, x)

)
− βĴ(t, x)− γ logπ(a|t, x)

]
π(a|t, x)da = 0,

for all (t, x), which, together with the terminal condition Ĵ(T, x) = h(x), is the
Feynman–Kac PDE that characterizes the value function under the policy π (equation
(11) in Jia and Zhou 2023). Therefore, it follows from the uniqueness of the solution
to the PDE to conclude that Ĵ ≡ J(·, ·;π). Moreover, it follows from Theorem 6-(i)
that q̂ ≡ q(·, ·, ·;π).
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(ii) This follows immediately from Theorem 6-(ii).

(iii) The proof is parallel to the second part of the proof of (i).

The last conclusion follows from the same argument in Jia and Zhou (2023).

The following theorem concerns the optimal value function and optimal q-function.

Theorem 9 Let a function Ĵ∗ ∈ C1,2
(
[0, T )×Rd

)
∩C

(
[0, T ]×Rd

)
with polynomial growth

and a continuous function q̂∗ : [0, T ]× Rd ×A → R be given satisfying

Ĵ∗(T, x) = h(x),

∫
A
exp{1

γ
q̂∗(t, x, a)}da = 1, ∀(t, x) ∈ [0, T ]× Rd. (11)

Then

(i) If Ĵ∗ and q̂∗ are respectively the optimal value function and the optimal q-function,
then given any π ∈ Π, for all (t, x) ∈ [0, T ]×Rd and any time grid Gt:T on [t, T ], the
following process

e−βsĴ∗(s,XG ,π
s ) +

∫ s

t
e−βu[r(u,XG ,π

u , aG ,π
u )− q̂∗(u,XG ,π

u , aG ,π
u )]du (12)

is an ({Fs}s≥0,P)-martingale, where {XG ,π
s , t ≤ s ≤ T} is the solution to (3) under

π with XG ,π
t = x. Moreover, in this case, π̂∗(a|t, x) = exp{ 1

γ q̂
∗(t, x, a)} is the optimal

policy.

(ii) If there exists one π ∈ Π such that for all (t, x) ∈ [0, T ]×Rd and any time grid Gt:T on

[t, T ], (12) is an ({Fs}s≥0,P)-martingale, then Ĵ∗ and q̂∗ are respectively the optimal
value function and the optimal q-function.

Proof

(i) The proof is parallel to the first part of Theorem 6-(i), while the optimality of π̂∗

follows from Proposition 8 in Jia and Zhou (2023).

(ii) The second constraint in (11) implies that π̂∗(a|t, x) := exp{ 1
γ q̂

∗(t, x, a)} is a prob-

ability density function, and q̂∗(t, x, a) = γ log π̂∗(a|t, x). So q̂∗(t, x, a) satisfies the
second constraint in (8) with respect to the policy π̂∗. When (12) is an ({Fs}s≥0,P)-
martingale under the given admissible policy π, it follows from Theorem 7–(iii) that

Ĵ∗ and q̂∗ are respectively the value function and the q-function associated with π̂∗.

Then the improved policy is Iπ̂∗(a|t, x) :=
exp{ 1

γ
q̂∗(t,x,a)}∫

A exp{ 1
γ
q̂∗(t,x,a)}da = exp{ 1

γ q̂
∗(t, x, a)} =

π̂∗(a|t, x). However, Theorem 2 in Jia and Zhou (2023) yields that π̂∗ is optimal,
completing the proof.

The last result below deals with the case of ergodic tasks.
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Theorem 12 Let an admissible policy π, a number V̂ , a function Ĵ ∈ C2
(
Rd

)
with poly-

nomial growth, and a continuous function q̂ : Rd ×A → R be given satisfying

lim
T→∞

1

T
E[Ĵ(X̃π

T )] = 0,

∫
A

[
q̂(x, a)− γ logπ(a|x)

]
π(a|x)da = 0, ∀x ∈ Rd, (13)

where X̃π follows the exploratory dynamic (the equation (8) in Jia and Zhou (2023)). Then

(i) V̂ , Ĵ and q̂ are respectively the value, the value function and the q-function associated
with π if and only if for all x ∈ Rd and any time grid G0:∞, the following process

Ĵ(XG ,π
t ) +

∫ t

0
[r(XG ,π

u , aG ,π
u )− q̂(XG ,π

u , aG ,π
u )− V̂ ]du (14)

is an ({Ft}t≥0,P)-martingale, where {XG ,π
t , 0 ≤ t < ∞} is the solution to (3) under

π with XG ,π
0 = x.

(ii) If V̂ , Ĵ and q̂ are respectively the value, value function and the q-function associated
with π, then given any admissible π′, for all x ∈ Rd and any time grid G0:∞, the
following process

Ĵ(XG ,π′

t ) +

∫ t

0
[r(XG ,π′

u , aG ,π′
u )− q̂(XG ,π′

u , aG ,π′
u )− V̂ ]du (15)

is an ({Ft}t≥0,P)-martingale, where {XG ,π′

t , 0 ≤ t < ∞} is the solution to (3) under

π′ with initial condition XG ,π′

0 = x.

(iii) If there exists an admissible π′ such that for all x ∈ Rd, (15) is an ({Ft}t≥0,P)-
martingale where Xπ′

0 = x, then V̂ , Ĵ and q̂ are respectively the value, value function
and the q-function associated with π.

Moreover, in any of the three cases above, if it holds further that π(a|x) =
exp{ 1

γ
q̂(x,a)}∫

A exp{ 1
γ
q̂(x,a)}da ,

then π is the optimal policy and V̂ is the optimal value.

Proof The proof is parallel to those of Theorems 6 and 7, and hence omitted.

Finally, an important remark is that the revision of the theoretical results in this erratum
do not impact the algorithms and numerical experiments in Jia and Zhou (2023), because
all the algorithms are naturally based on discretely sampled state processes.
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