
Submodular functions

Yuri Faenza

IEOR, Columbia University

yf2414@columbia.edu

Last updated on May, 09th 2021

Abstract

These notes contain examples of submodular functions and describe certain algorithms for
optimizing them. They are intended for students from the M.Sc. class IEORE4008 - Com-
putational Discrete Optimization and the Ph.D. class IEORE6614 - Optimization II in the
IEOR Department at Columbia University. While better algorithms (in terms of running time
and/or quality of the output solution) are often known, those discussed in here are accessible to
Ph.D. students (and, in some cases, to M.Sc. students) with a general background in discrete
optimization. I would be glad if you could report to me any error or typo you find in these
notes.

Contents

1 Definition, basic properties, and examples 2
1.1 Examples . 3
1.2 Measuring how “close to submodular” a nonnegative function is 8

2 Maximizing a submodular function 9
2.1 Monotone, with cardinality constraint . 9

2.1.1 Some consequences of the greedy algorithm 11
2.2 Monotone, with knapsack constraint . 11
2.3 Monotone, with matroid constraint . 13
2.4 Non-monotone . 15

3 Minimizing a submodular function 17
3.1 An algorithm for f symmetric . 18
3.2 The Lovasz extension and an algorithm for MIN-SF 20

3.2.1 An application of the Lovasz’s extension: the fractional Sandwich theorem . . 24

4 Solutions to selected exercises 25

5 Sources 29

1

1 Definition, basic properties, and examples

Let V be a finite set, and denote by 2V the power set of V , i.e., the family of all subsets of V . A
function f : 2V → R is called submodular if, for each A,B ∈ 2V , we have:

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B). (1)

Let us start by proving an equivalent definition of submodularity.

Lemma 1. Let f : 2V → R be a function. f is submodular if and only if it satisfies the law of
diminishing returns, i.e.

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B) for all A ⊆ B ∈ 2V and e ∈ V \B. (2)

Proof. Assume f is submodular, and let A,B, e be as in (2). Define A′ := A ∪ {e} and B′ := B.
Then from (1), we have:

f(A ∪ {e}) + f(B) = f(A′) + f(B′) ≥ f(A′ ∩B′) + f(A′ ∪B′) = f(A) + f(B ∪ {e}),

as required.
Now assume f satisfies (2). Let B \ A = {e1, . . . , ek}. Then, by repeatedly applying (2), we

have:
f(A ∩B)− f(A) ≤ f((A ∩B) ∪ {e1})− f(A ∪ {e1})

≤ f((A ∩B) ∪ {e1, e2})− f(A ∪ {e1, e2})
≤ ...
≤ f(B)− f(A ∪B),

as required.

Next exercise shows that the previous definition can be simplified to sets T consisting of only
one element more than S.

Exercise 1. Let f : 2V → R be a function. f is submodular if and only if for each S ⊆ V and
i, j ∈ V \ S, we have:

f(S ∪ {i})− f(S) ≥ f(S ∪ {i, j})− f(S ∪ {j}). (3)

As next lemmas show, submodularity is preserved when taking nonnegative combinations and
complement functions.

Lemma 2. Let f, g : 2V → R be submodular functions, and λ, α ≥ 0. Then λf+αg is a submodular
function.

Proof. Immediately from the definition.

Exercise 2. Let f : 2V → R be a submodular function. Show that the function g : 2V → R defined
as follows:

g(A) := f(V \A) for all A ⊆ V

is submodular.

2

Many submodular functions enjoy additional properties. We say that a submodular function
f : 2V → R is monotone if A ⊆ B ⊆ V implies f(A) ≤ f(B). We say it is symmetric if
f(A) = f(V \A) for all A ⊆ V . Lemma 2 and Exercise 2 imply the following.

Lemma 3. If f : 2V → R is a submodular function, then the function h : 2V → R defined as
h(A) := f(A) + f(V \A) for all A ⊆ V is also submodular.

Another useful property is the following.

Lemma 4. Let f : 2V → R≥0 be a submodular function, S ⊆ T . Then

f(T) ≤ f(S) +
∑

e∈T\S

(f(S ∪ {e})− f(S)). (4)

If f is also monotone, then (4) also holds if S 6⊆ T .

Proof. Let T \ S = {e1, . . . , ek}.

f(T)− f(S) =
∑k

i=1(f(S ∪ {e1, . . . , ei})− f(S ∪ {e1, . . . , ei−1})) (telescopic sum)

≤
∑k

i=1(f(S ∪ {ei})− f(S)) (by submodularity).

If moreover f is monotone and S 6⊆ T , we have f(T)− f(S) ≤ f(T ∪S)− f(S), and the statement
follows from the first part.

1.1 Examples

Submodular functions appear broadly in problems in machine learning and optimization. Let us
see some examples.

Exercise 3 (Cut function). Let G(V,E) be a graph with a weight function w : E → R+. Show
that the function that associates to each set A ⊆ V the value w(δ(A)) is submodular.

Exercise 4. Let G(V,E) be a graph. For F ⊆ E, define:

f(F) := |{u ∈ V : δ(u) ∩ F 6= ∅}|.

Show that f is a submodular function.

Example 1 (Joint entropy). Consider a discrete random variableX, with support S and probability
mass function (pmf) P . The entropy of X is given by

H(X) := −
∑
x∈S

P (x) log(P (x)),

where the basis of the logarithm function is 2 and we assume P (x) log(P (x)) = 0 when P (x) = 0.
The entropy gives a measures of how “unpredictable” a random variable is. For instance, take X
to be a (possibly biased) coin, and define:

P (X) =

{
1 with probability p

0 with probability 1− p

3

For p = .5, i.e., the coin is unbiased, we have H(X) = 1, while for p ∈ {0, 1} we have H(X) = 0.

If we are given a finite set of random variables X1, . . . , Xn with supports S1, . . . , Sn, their joint
entropy is given by:

H(X1, . . . , Xn) = −
∑

x1∈S1

∑
x2∈S2

...
∑

xp∈Sn

P (x1, . . . , xn) log(P (x1, . . . , xn)),

where P (x1, . . . , xn) is the joint pmf and we let H(∅) = 0. Note that H(X) ≥ 0 for all X ⊆
{X1, . . . , Xn}, since it is the summation of a finite number of nonnegative terms. Given families
X ,Y ⊆ {X1, . . . , Xn}, we define the conditional entropy

H(X|Y) := H(Y ∪ X)−H(Y).

One can verify that H(X|Y) ≤ H(X|Y ′) for Y ′ ⊆ Y, where we define H(X|∅) = H(X) - i.e., the
larger the set of variables we condition on, the smaller is the conditional entropy. We claim that
the joint entropy function is submodular. We show this via (2). Let X ⊆ Y ⊆ {X1, . . . , Xn}, and
X ∈ {X1, . . . , Xn} \ Y. Then:

H(X ∪ {X})−H(X) = H({X}|X) ≥ H({X}|Y) = H(Y ∪ {X})−H(Y).

Example 2 (Symmetric Mutual information). Consider again the joint entropy defined in Exam-
ple 1 and the notation introduced there. Abbreviate Z := {X1, . . . , Xn}. Given sets X ,Y ⊆ Z,
define their mutual information as:

I(X ,Y) := H(X)−H(X|Y) = H(X) +H(Y)−H(X ∪ Y).

Intuitively, the mutual information compute how much the entropy of X decreases when we condi-
tion on Y. Since conditioning does not increase the entropy, we have

I(X ,Y) = H(Y)−H(Y|X) ≥ 0.

Now define the symmetric mutual information function as follows:

I(X) := I(X ,Z \ X) = H(X) +H(Z \ X)−H(Z).

Intuitively, if I(X) is big, then seeing a realization of variables in X highly reduces the entropy of
variables in Z \ X . Letting X ⊆ Y ⊆ Z, and X ∈ Z \ Y, we have:

I(X ∪ {X})− I(X) = H(X ∪ {X}) +H(Z \ (X ∪ {X}))−H(Z)−H(X)−H(Z \ X) +H(Z)
= H(X ∪ {X}) +H(Z \ (X ∪ {X}))−H(X)−H(Z \ X)

and similarly

I(Y ∪ {X})− I(Y) = H(Y ∪ {X}) +H(Z \ (Y ∪ {X}))−H(Y)−H(Z \ Y) .

We have therefore

I(X ∪ {X})− I(X) = (H(X ∪ {X})−H(X)) + (H(Z \ (X ∪ {X}))−H(Z \ X))
≥ (H(Y ∪ {X})−H(Y)) + (H(Z \ (Y ∪ {X}))−H(Z \ Y))
= I(Y ∪ {X})− I(Y),

where we used that H is submodular hence, by Lemma 2, its complement function is also submod-
ular. Hence, the symmetric mutual information is submodular.

4

Example 3 (Sensor placement). Consider the following (vague) problem: we have to place sensors
in a river in such a way to obtain as much information as possible on the status of the river (could
be the temperature, the pollution level, etc.). Locations for sensors must chosen from a set V . This
problem can be made precise by formulating it using submodular functions.

As a first example, assume that, by placing a sensor in location v ∈ V , an area of radius rv will
be covered. Hence define the function f : 2V → R+ as follows:

f(S) = A(∪v∈SCv) for S ⊆ V ,

where Cv is the circle of radius rv centered at v for each v ∈ V , and A(C) is the area of set C.
f(S) measures therefore the area covered by sensors placed in locations from S. Using (2), one
immediately checks that f is submodular.

As a second example, we can model the problem using the symmetric mutual information from
Example 2. Indeed, we can associate to each location v ∈ V , a random variable Xv, which models
the measurement in the area around location v. Placing a sensor in location v will realize the
random variable Xv. However, placing a sensor in a location close to v can reduce the entropy
of Xv (e.g., the temperature in a location is probably close to the one few meters away), while
placing it in a location much further away will not. For appropriately defined random variables
Z = {X1, . . . , X|V |}, and for X ⊆ Z we can therefore define h(X) := I(X) as a measure of how
effective placing sensors in locations X is. h is submodular by Example 2.

Example 4. (1-product of matrices). For matrices M1,M2, we let M1 ⊗M2 be the matrix whose
set of columns is the cartesian product of the set of columns of M1,M2. For instance,

(
1 0

)
⊗
(
0
)

=

(
1 0
0 0

)
,

(
1 0
2 3

)
⊗
(

1 0 0
0 1 1

)
=

1 1 1 0 0 0
2 2 2 3 3 3
1 0 0 1 0 0
0 1 1 0 1 1

 .

We say that a matrix M is a 1-product of M1,M2 if it can be obtained from M1 ⊗ M2 by
switching rows and columns. Mutual information (see Example 2) and the minimization of sym-
metric submodular functions (see Section 3.1) can be employed to devise an algorithm that decides
whether a given matrix M is the 1-product of two matrices.

Let our input matrix M have m rows and n columns. Let C := (C1, . . . , Cm) be a uniformly
chosen random column of M . That is, P (C = c) = µ(c)/n, where µ(c) denotes the number of
occurrences in M of the column c of M . For X ⊆ [m] we let CX := (Ci)i∈X and CX := (Ci)i∈X ,
where X := [m] \X. Define f : 2[m] → R to be the mutual information of CX and CX – that is,
for X ⊆ [m], we let f(X) := I(CX ;CX). We already observed in Example 2 that f is nonnegative
and submodular. Note also that f is symmetric and that f(X) = 0 if and only if CX , CX are
independent random variables.

We next argue thatM is a 1-product of some matricesM1,M2 if and only if min∅(X(V f(X) = 0.
The latter can be checked using the algorithm from Section 3.1.

First, we prove the “only if” direction. Suppose that M is the 1-product of two matrices M1,M2,
with n1, n2 columns respectively. Then each row of M corresponds either to a row of M1, or to a
row of M2. Let X be the collection of rows of M that correspond to a row of M1.

Any column c of M can be written as c = (cX , cX), where cX (resp. cX) is the subvector of
c corresponding to rows in X (resp. X). We have µ(c) = µ1(cX)µ2(cX), where µi denotes the

5

multiplicity of a column in Mi, i = 1, 2. Hence

P (CX = cX , CX = cX) = P (C = c) =
µ(c)

n
=
µ1(cX) · n2

n
·
n1 · µ2(cX)

n
= P (CX = cX)(CX = cX),

where we used n = n1n2. This proves that CX and CX are independent, hence f(X) = 0.

Exercise 5. Prove the “if” direction.

Exercise 6 (Common genetic information). Consider a set of species S := {S1, . . . , Sn}, each
represented by its DNA sequence, which can be thought of as a ordered string of the entries
{A, T,C,G} (with repetitions). For instance, we could have:

S1 = ATTCCGCGCGC, S2 = ACGGGCTACTC, ... , Sn = ACCCCATGCAG.

For S ∈ S and an ordered string s, we say that s appears as a substring in S if entries of s
appears in S in the same order they appear in s (possibly non-consecutively). Given S, S′ ∈ S,
define their common genetic information as

ICG(S, S′) = |{s : s is a substring that appears in S1} ∩ {s : s is a substring that appears in S2}|.

The common genetic information is a measure of how close the DNAs of two species are. For
X ⊆ S, define the symmetric common genetic information as:

ICG(X) :=
|{∪S1∈X ,S2∈S\X {s : s is a substring that appears in S1}

∩
{s : s is a substring that appears in S2}}|.

The symmetric common genetic information is a measure of how close the DNAs of species across
different sets of the partition are. Show that the symmetric common genetic information is sub-
modular.

Example 5 (Set Covering). Suppose we have a set of objects V , and let S1, . . . , Sn be a number of
(possibly overlapping) subsets of V . Given S ⊆ V , let f(S) be the number of sets from S1, . . . , Sn
that have non-empty intersections with S. Using (2), one easily checks that f is submodular.

Example 6 (Influence maximization in social networks). Let G(V,E) be a graph, modeling a (so-
cial) network. Suppose we would like to measure as an information spreads in the network. To each
arc e of the graph we associate a probability p(e). The spreading of the information goes as follows.
At round 0, a set S ⊆ V is communicated the information. At each round i ≥ 1, independently for
each node u that has been communicated the information for the first time in round i− 1 and for
each edge uv ∈ E, e is realized with probability p(e), i.e. v will be communicated the information
with probability p(e) (note that v may already have been communicated the information, in which
case the outcome is not important). We stop when we reach a round when there is no new person
that has been communicated the information. For S ⊆ V , we let f(S) be the expected number
of people that are communicated the information, assuming that in round 0 the information was
communicated to S.

We show that f is submodular. This follows from a simple observation: wlog we assume that
whether any arc e = uv is realized or not is computed a priori, i.e., at the very beginning of the

6

procedure. If none of the endpoints of e was communicated the information during the procedure,
it does not matter whether e is realized or not. If conversely one of u, v is communicated the
information and e is realized, then both u and v are eventually communicated the information.

Let c be the outcome of a sampling of all arcs of G, and define fc(S) to be the number of
people that are communicated the information, assuming that in round 0 the information was
communicated to S and that the realization of arcs is exactly as in c. Observe that f(S) =∑

c p(c)fc(S), where p(c) is the probability of outcome c and the sum is over all possible c. By
Lemma 2, it suffices to show that fc(S) is submodular. Observe that, if Gc is the subgraph G
obtained by keeping only the arcs realized in c, then a node v is communicated the information
if and only if there exists a node in S that belongs to the same connected component of v in Gc.
Hence fc(S) counts the number of connected components of Gc that intersect S. This is an instance
of set covering, see Example 5, hence fc is submodular. Note that computing fc(S) for a fixed c is
NP-Hard [7].

Example 7 (Document summarization). Given a collection of documents or images N , we want
to measure how much a set S ⊆ N “represents” the original collection N . In order to model this
problem, consider for instance, the problem solved by a search engine when a query arrives. On
the one hand, it wants to show content that is most relevant for the search. On the other hand, it
does not want to show two very similar documents. We can model the quality of the set S as

f(S) = R(S) +D(S),

where R(S) measures the relevance and D(S) measures the diversity.
A typical choice for R(S) is known as the facility location function:

R(S) =
∑
a∈N

{
max
b∈S

s(a, b)

}
,

where s(a, b) is a similarity measure between a and b. A typical choice for D(S) is

D(S) =
∑
j

√
|S ∩ Pj |,

where {Pj}j is a partition of N . It can be easily shown that both R and D are submodular
functions.

Example 8 (Rank function of a matroid). Let V be a finite set and I a family of subsets of V .
(V, I) is a matroid if it satisfies the following three properties:

(M0) ∅ ∈ I;

(M1) J ⊆ J ′ ∈ I ⇒ J ∈ I;

(M2) Let S ⊆ V , and J, J ′ be inclusionwise maximal subsets of S such that J, J ′ ∈ I. Then
|J | = |J ′|.

The rank function of a matroid is the function r : 2V → N ∪ {0} defined as follows:

r(S) := max{|J | : J ⊆ S, J ∈ I}. (5)

7

Note that r is well-defined because of (M2). For a given set S, a set J achieving (5) is called a
basis of S. A set achieving r(V) is called a basis of the matroid.

We now show that r is submodular, by proving that, for every A,B ⊆ V , (1) holds. Let J∩ be
a basis of A ∩ B. Note that we can “expand” J∩ to a basis of A – that is, create a set JA ⊇ J∩
that is a basis of A. Indeed, we can let JA be any inclusionwise maximal set from I such that
J∩ ⊆ JA ⊆ A. Then, by (M2), JA realizes r(A). Observe moreover that

JA ∩B = J∩. (6)

Indeed, by construction, JA∩B ⊇ J∩. Moreover, by (M1), JA∩B ∈ I, and JA∩B) J∩ contradicts
the fact that J∩ is a basis of A ∩B.

Similarly, we can “expand” JA to a basis J∪ of A ∪B, that is

J∪ ∩A = JA. (7)

We conclude therefore

r(A) + r(B)︸︷︷︸
≥|J∪|−|JA|+|J∩|

−r(A ∪B)− r(A ∩B) ≥ |JA|+ |J∪| − |JA|+ |J∩| − |J∪| − |J∩| ≥ 0,

where we used that, by (6) and (7), JB := J∪ \ (JA \ J∩) ⊆ B and |JB| = |J∪ \ (JA \ J∩)| =
|J∪| − |JA|+ |J∩|. Since, by (M1), JB ∈ I, we have r(B) ≥ |JB|. Rearranging gives the thesis.

When dealing with algorithms that involve submodular functions, we will always assume that
evaluating the function requires constant time. This may not be true, and in cases where it is not,
then the running time of the algorithms must be appropriately scaled. We call each evaluation of
the function an oracle call.

1.2 Measuring how “close to submodular” a nonnegative function is

While submodularity is a “yes/no” concept – that is, a function is either submodular or it is not,
we can define a continuous parameter describing how “close to submodular” is a function that is
not submodular. Let f : 2V → Z>0 be monotone. The submodularity ratio of f is

q(f) := min
S⊆T⊆V

∑
x∈T\S(f(S ∪ {x})− f(S))

f(T)− f(S)
,

where we define 0/0 := 1.

Lemma 5. Let f : 2V → Z>0 be monotone. Then f is submodular if and only if q(f) ≥ 1.

Proof. Suppose f is submodular and let S ⊆ T ⊆ V . Applying Lemma 4, we deduce

f(T) ≤ f(S) +
∑

x∈T\S

(f(S ∪ {x})− f(S)),

and the statement follows. Conversely, let f not be submodular. Applying Exercise 1, there exist
S ⊆ V , and elements i, j ∈ V \ S such that

f(S ∪ {i})− f(S) < f(S ∪ {i, j})− f(S ∪ {j}). (8)

8

Taking S = S, T = S ∪ {i, j} in the formula of q(f), we have

q(f) ≤ f(S∪{i})−f(S)+f(S∪{j})−f(S)
f(S∪{i,j})−f(S)

= f(S∪{i})−f(S)+f(S∪{j})−f(S)
f(S∪{i,j})−f(S∪{j})+f(S∪{j})−f(S)

< f(S∪{i})−f(S)+f(S∪{j})−f(S)
f(S∪{i})−f(S)+f(S∪{j})−f(S)

= 1.

where in the strict inequality we used (8).

Often, algorithms for monotone submodular functions can be employed for general monotone
functions, with the quality we can guarantee for the output degrading as q(f) becomes smaller.
See Section 2.1.1.

2 Maximizing a submodular function

In this section, we deal with a number of problems that aim at maximizing submodular functions.
As we will see, all such problems are NP-Hard. Hence, the goal will be to obtain approximation
algorithms.

It makes sense to assume throughout the section that f : 2V → R+, else no approximation
factor can be guaranteed. Indeed, let S∗ be an optimal solution to, say, the problem of maximizing
a submodular function f over a ground set V . Now define the function f ′(S) = f(S) − f(S∗).
Clearly, the maximum of f ′ is achieved at S∗, and has value 0, while all non-optimal sets S satisfy
f ′(S) < 0. Using (1), one easily verifies that f ′ is submodular. Hence, for any non-optimal set
S we have f ′(S∗)/f(S) = 0. So any constant factor approximation to the problem of maximizing
a submodular function needs to find the maximum of f ′, contradicting its NP-Hardness (or the
corresponding complexity theory assumption).

When considering an approximation algorithm, we say it is an α-approximation if it outputs a
solution at least α times the optimum (hence, α ≤ 1).

2.1 Monotone, with cardinality constraint

Consider the following problem MAX-MC:

Given: A monotone (i.e., f(S) ≤ f(T) for S ⊆ T) submodular function f : 2V → R+, and a
number k ∈ N.
Find : A set ∅ ⊆ X ⊆ V of cardinality k that maximizes f(X).

Note that we could have replaced of cardinality k with of cardinality at most k without changing
the problem, since we assume that the function is monotone.

Theorem 6. MAX-MC is NP-Hard.

A simple greedy algorithm gives a constant-factor approximation to MAX-MC.

Theorem 7. Algorithm 1 gives a 1− (1− 1
k)k ≥ 1− 1

e -approximation MAX-MC.

9

Algorithm 1 Greedy algorithm for MAX-MC.

Require: A monotone submodular function f : 2V → R+ and k ∈ N.
1: Set S = ∅.
2: for i = 1, . . . , k do
3: Select v ∈ V \ S that maximizes f(S ∪ {v}). Set S = S ∪ {v}.
4: end for
5: return S.

Proof. Let S∗ = {e1, . . . , ek} be an optimal solution and, for ` = 0, . . . , k, let S` be the solution
constructed by the algorithm in iteration `. We have:

f(S∗)− f(S`) ≤
∑k

i=1(f(S` ∪ {ei})− f(S`)) (by Lemma 4)

< k(f(S`+1)− f(S`)) (by greedy procedure).

Hence, we have:

f(S`+1)− f(S`) ≥
1

k
(f(S∗)− f(S`)) ⇔ f(S∗)− f(S`+1) ≤ (1− 1

k
)(f(S∗)− f(S`)).

We conclude:

f(S∗)− f(Sk) ≤ (1− 1
k)(f(S∗)− f(Sk−1)

≤ (1− 1
k)2(f(S∗)− f(Sk−2))

≤ ... ≤ (1− 1
k)k((f(S∗)− f(S0))

≤ (1− 1
k)kf(S∗) (by nonnegativity).

Algorithm 1 is the best possible: it can be shown that no polynomial-time algorithm can achieve
an approximation ratio strictly better than (1− 1

e).

Exercise 7 (Lazy greedy). Since evaluating a submodular function can be expensive and/or the
ground set may be very large, the greedy algorithm for maximizing non-negative monotone submod-
ular functions is often replaced in practice by the so-called Lazy greedy. Assume f(∅) = 0, which
can be achieved by replacing f with f − f(∅). At the first step, Lazy greedy computes for e ∈ V
the value p(e) = f({e}), adds to S the element e1 that maximizes p(e1), and sorts the remaining
values p(e) in non-increasing order. At the i-th step, instead of computing f(S ∪ {e}) − f(S) for
all e ∈ V \S, Lazy greedy takes the element e from V \S that maximizes p(e), and updates p(e) =
f(S ∪ {e})− f(S). If e still maximizes p(f) for f ∈ V \ S, then e is added to S and the algorithm
proceeds to the next step. Else, let e′ be the new maximizer, update p(e′) = f(S ∪{e′})f(S), again
check if e′ still maximizes p(e), and proceed as above. Prove that Lazy greedy will not perform
more evaluations of f than the classical greedy, but it still has an (1− 1

e) approximation guarantee
(for the original function).

10

Exercise 8. Let f : 2V → R be a monotone submodular function. Show that an optimal solution
to MAX-MC can be obtained by solving the following problem:

max µ
s.t. µ ≤ f(S) +

∑
e ∈ V \ Sxe · (f(S ∪ {e} − f(S)) S ⊆ V∑

e∈V ≤ k
xe ∈ {0, 1} ∀e ∈ V.

2.1.1 Some consequences of the greedy algorithm

As a first consequence, we analyze the performance of the greedy algorithm when f is not submod-
ular, as a function of q(f).

Exercise 9. Apply Algorithm 1 on input k ∈ N and a monotone function f : 2V → R, and let S be
set it outputs. Let S∗ be a set achieving maxS⊆V :|S|≤k f(S). Show that f(S) ≥ (1− e−q(f))f(S∗).

Now consider the following maximum coverage problem. We are given a monotone function1

f : 2V → N and t ∈ N, with t ≤ f(V). We want to find a set S ⊆ V such that f(S) ≥ t, and S is of
minimum cardinality among such sets. To do that, we apply the following appropriate modification
of Algorithm 1, see Algorithm 2.

Algorithm 2 Greedy algorithm for maximum coverage.

Require: A monotone function f : 2V → N and t ∈ N.
1: Set S = ∅.
2: while f(S) < t do
3: Select v ∈ V \ S that maximizes f(S ∪ {v}). Set S = S ∪ {v}.
4: end for
5: return S.

Let S be the set output by the algorithm and S∗ be an optimal solution to the problem.

Exercise 10. Show that |S| ≤ 1 + log t
q(f) |S

∗|.

2.2 Monotone, with knapsack constraint

We now consider MAX-MK, a common generalization of MAX-MC and of the classical knapsack problem.

Given: A monotone submodular function f : 2V → R, a capacity B and, for each e ∈ V , a weight
w(e) ≥ 0.
Find : A set ∅ ⊆ X ⊆ V of total weight at most B that maximizes f(X).

When dealing with the classical knapsack problem, we saw that an algorithm that greedily adds
objects basing its decision only on their contribution to the objective function, without accounting
for their weight, can perform very poorly. Moreover, we also saw that a solution made of one object
only could reach a much higher profit than pure greedy, hence such solutions need to be enumerated
separately.

1Notice that we are assuming that the codomain of f is the set of strictly positive integers. This is not required
for the algorithm, but it is needed to conclude the bound from Exercise 10.

11

Given those two facts, the algorithm below is quite natural. Note that in this case, we first
enumerate over all solutions with at most 2 objects, and then we apply weight-scaled greedy (as in
the classical knapsack case) starting from all feasible sets of at most 3 objects.

Algorithm 3 Greedy algorithm for MAX-MK.

Require: A monotone submodular function f : 2V → R+, weights w : V → R+, and capacity B.
1: Let S be, among the feasible solutions S with at most 2 objects, the one that maximizes f(S).

2: for Y ⊆ V , |Y | = 3 do
3: if w(Y) > B then
4: Set SY = ∅.
5: else
6: Set SY = Y , I = V \ Y .
7: while I 6= ∅ do
8: Let e ∈ arg maxe∈I{f(SY ∪{e})−f(SY)

w(e) }.
9: Set I = I \ {e}.
10: if w(SY ∪ {e}) ≤ B then
11: Set SY = SY ∪ {e}.
12: end if
13: end while
14: end if
15: end for
16: return arg max{f(S), {f(SY) : Y ⊆ V, |Y | = 3}}.

Algorithm 3 achieves for MAX-MK the same approximation guarantee as Algorithm 1 for MAX-MC.

Theorem 8. Let Ŝ be the set output by Algorithm 3, and let S∗ be the optimal solution. Then
f(Ŝ) ≥ (1− 1

e)f(S∗).

In order to prove Theorem 8, we can assume that S∗ has size at least 3, else the statement is
trivial. Therefore, let S∗ = {f1, . . . , fk}, with k ≥ 3, so that fi ∈ arg maxf∈S∗\S∗i−1

f(S∗i−1 ∪ {f}),
where S∗i = {f1, . . . , fi}. Fix now Y = S∗3 ⊆ S∗, and consider the solution SY constructed by
the algorithm. It is enough to show f(SY) ≥ (1 − 1

e)f(S∗). For convenience, we will drop the Y
superscript and add instead a subscript `, denoting by S` the set SY after the `-th repetition of
Step 2. We also let e` be the selected object in the `-th repetition of Step 3. For Y ⊆ X ⊆ V ,
let g(X) := f(X) − f(Y). g is the translate of a monotone submodular function, and hence it is
monotone submodular. In addition, we let B′ = B − w(Y).

Let `∗ be the first iteration when an item is not added into the set S`∗ . We can assume that
e`∗ ∈ S∗, else the removal of e`∗ does not change the outcome of the algorithm (or the optimum).

Lemma 9. g(S`∗−1 ∪ {e`∗}) ≥ (1− 1
e)g(S∗).

12

Proof. Let ` ≤ `∗ − 1. We have:

g(S∗) ≤ g(S`) +
∑

e∈S∗\S`
g(S` ∪ {e})− g(S`) (by Lemma 4)

≤ g(S`) +
∑

e∈S∗\S`
w(e)

g(S`∪{e`+1})−g(S`)
w(e`+1) (by greedy procedure)

= g(S`) +
g(S`∪{e`+1})−g(S`)

w(e`+1)

∑
e∈S∗\S`

w(e)

≤ g(S`) +
g(S`∪{e`+1})−g(S`)

w(e`+1) B′ (by feasibility of S∗).

We deduce

−
(
g(S` ∪ {e`+1})− g(S`)

)
≤ −w(e`+1)

B′
(g(S∗)− g(S`))

m

g(S∗)− g(S` ∪ {e`+1}) ≤ (1− w(e`+1)

B′
)(g(S∗)− g(S`)).

Exercise 11. Conclude the proof of the lemma.

We now prove Theorem 8. Let f∗ := e`∗ . From Lemma 9, we have:

f(S`∗−1 ∪ {f∗})− f(Y) ≥ (1− 1

e
)(f(S∗)− f(Y)). (9)

For i = 1, . . . , 3, since S∗i ⊆ S`∗−1, we also have:

f(S`∗−1 ∪ {f∗})− f(S`∗−1) ≤ f(S∗i−1 ∪ {f∗})− f(S∗i−1) ≤ f(S∗i)− f(S∗i−1),

where the first inequality follows from submodularity and the second from the ordering of fi and
the fact that f∗ ∈ S∗ \ {f1, f2, f3}. Summing over i = 1, 2, 3 gives:

3(f(S`∗−1 ∪ {f∗})− f(S`∗−1)) ≤ f(S∗3)− f(∅) ≤ f(S∗3) = f(Y). (10)

Using (9) and (10), we deduce:

f(S`∗−1) ≥ f(S`∗−1 ∪ {f∗})− 1
3f(Y) = f(S`∗−1 ∪ {f∗})− f(Y) + 2

3f(Y)

≥ (1− 1
e)(f(S∗)− f(Y)) + 2

3f(Y) ≥ (1− 1
e)f(S∗).

Since the algorithm outputs a superset of S`∗−1 and f is monotone, the theorem follows.

2.3 Monotone, with matroid constraint

In Example 8, we have seen the definition of matroid (V, I) and observed that the rank function
of a matroid is submodular. Recall that the family of sets I satisfies a monotonicity property:
J ⊆ J ′ ∈ I ⇒ J ∈ I. Hence, imposing that a set of objects selected from a ground set V belongs
to I generalizes the cardinality constraint in a different way than the knapsack constraint. It is
then reasonable to attack the following problem MAX-MAT

13

Algorithm 4 Greedy algorithm for MAX-MT.

Require: A monotone submodular function f : 2V → R+, and a matroid (V, I).
1: Set J = ∅, I = V .
2: while I 6= ∅ do
3: Let e ∈ arg maxe∈I f(S ∪ {e}).
4: Set I = I \ {e}.
5: if J ∪ {ē} ∈ I then
6: Set J = J ∪ {ē}.
7: end if
8: end while
9: return J .

Given: A monotone submodular function f : 2V → R+, a matroid (V, I).
Find : A set J ∈ I that maximizes f(J).

by a suitable adaptation of Algorithm 1, see Algorithm 4.
Before investigating Algorithm 4, we need to explain the computational model we work with.

Indeed, similarly to what we have seen for submodular functions, describing a matroid by listing
all the sets in I may require size exponential in |V |. Instead, we assume we have access to an
independence oracle that, whenever we choose a set J ⊆ V , will output whether J ∈ I. In this
model, both our input size and the running time of Algorithm 4 are polynomial in |V |.

Recall that a basis of a matroid (V, I) is a set J ∈ I of maximum cardinality. We will use the
following fact.

Lemma 10. Let J, J ′ be two basis of (V, I). Then |J | = |J ′| and there exists a bijection φ :
B1 \B2 → B2 \B1 such that, for all x ∈ B1 \B2, we have that B1 \{x}∪{φ(x)} is a basis of (V, I).

Theorem 11. Algorithm 4 outputs a basis J of (V, I) with f(J) ≥ 1
2f(J∗), where J∗ is an optimal

solution to MAX-MAT.

Proof. Assume e1, e2, · · · , ek are the elements of J , added in this exact order. Note that both J
and J∗ are bases of (V, I) and thus we can let φ be a bijection from J to J∗, such that restricted to
J \J∗, φ satisfies Lemma 10 and restricted to J ∩J∗, φ is the identity function. Let |J | = |J∗| =: k,
e∗i := φ(ei) and Ji := {e1, e2, · · · , ei} for all i ∈ [k] with J0 = ∅. Then,

f(J∗)− f(J) ≤
∑

e∈J∗\J f(J ∪ {e})− f(J) (by Lemma 4)

=
∑k

i=1 f(J ∪ {e∗i })− f(J)

≤
∑k

i=1 f(Ji−1 ∪ {e∗i })− f(Ji−1) (by Lemma 1)

≤
∑k

i=1 f(Ji−1 ∪ {ei})− f(Ji−1) (because of the greedy procedure and Lemma 10)

= f(J)− f(∅) (telescopic sum)

≤ f(J) (by nonnegativity of f).

14

2.4 Non-monotone

We now consider the problem of maximizing a non-monotone submodular function, which we denote
by MAX-C.

Given: A submodular function f : 2V → R.
Find : A set ∅ ⊆ X ⊆ V that maximizes f(X).

Note that MAX-C includes max-cut as a special case. Hence, the following holds.

Theorem 12. MAX-C is NP-Hard.

One could think of using the vanilla greedy algorithm seen for MAX-MC. However, this can
go arbitrarily bad. Consider in fact the following example: f : {v1, . . . , vk} → R≥0 defined as
f(S) = |S| if v1 /∈ S, and f(S) = 2 otherwise. It can be verified that the function is submodular,
greedy outputs a set containing v1, while the optimal solution is {v2, . . . , vk}. Understanding
why greedy performs poorly on this instance will allow us to understand how to design a better
algorithm.

Greedy iteratively adds the item that looks most promising at the current stage. However, it
overlooks the fact that removing an item may be more promising than adding it. In the example
above, we have:

f({v1})− f(∅) = 2 but f({v1, . . . , vk} \ {v1})− f({v1, . . . , vk}) = k − 2.

So removing v1 from the full set looks more promising than adding it to the empty set. How reliable
are those estimations? By Lemma 1, we know that:

f({v1})− f(∅) ≥ f(S ∪ {v1}) \ f(S) ≥ f(T ∪ {v1}) \ f(T) for all S ⊆ T such that v1 /∈ T.

From the previous inequalities, we learn two facts: first, adding {v1} never gives an increase in
the profit larger than 2. Second, for a more accurate estimate of the effect of adding v1 to the
output solution T , we can compute f(S ∪ {v1}) \ f(S) for a set S that is contained in T , and as
similar as possible to it. One the other hand, by Exercise 2, g : {v1, . . . , vk} → R≥0 defined as
g(S) := f({v1, . . . , vk} \ S) for S ⊆ {v1, . . . , vk} is also submodular, hence similarly

f(T \ {v1})− f(T) ≥ f(S)− f(S ∪ {v1}) ≥ f(∅)− f({v1}) for all S ⊆ T such that v1 ∈ T \ S.

holds. Following this intuition, we consider therefore the following algorithm, called double greedy.

Theorem 13. Double greedy is a 1
3 -approximation to MAX-C.

Proof. In order to prove Theorem 13, we start with the observation that not both adding and
removing any of the ei can decrease the value of the function. Actually, we show a stronger
statement.

Exercise 12. In each step of Algorithm 5, a+ b ≥ 0.

Now let OPT be any optimal solution to MAX-C, and consider the family of solutions OPT0, . . . ,
OPTn, defined as follows: for i ∈ {0, . . . , n}, set

OPTi = (Yi ∩ {e1, . . . , ei}) ∪ (OPT ∩ {ei+1, . . . , en}).

15

Algorithm 5 Double greedy algorithm for MAX-C.

Require: A submodular function f : 2V → R+, with V = {e1, . . . , en}.
1: Let X0 = ∅, Y0 = V .
2: for i = 1, . . . , n do
3: Let a = f(Xi−1 ∪ {ei})− f(Xi−1), b = f(Yi−1 \ {ei})− f(Yi−1).
4: if a ≥ b then
5: Set Xi = Xi−1 ∪ {ei}, Yi = Yi−1.
6: else

Set Xi = Xi−1, Yi = Yi−1 \ {ei}.
7: end if
8: end for
9: return Xn (or, equivalently, Yn).

Equivalently, OPTi is the solution that agrees with Yi (equivalently, with Xi) on the first i elements,
and with OPT in the remaining ones. In particular, OPT0 = OPT and OPTn = Xn = Yn. To
bound how much f(OPTi) decreases as i goes from 0 to n, we can bound its local changes, i.e., its
changes between two consecutive iterations of the algorithm. This is achieved by the next lemma,
that connects this local change to the local changes of the value of the solutions constructed by the
algorithm.

Lemma 14. Let i ∈ [n]. Then f(OPTi−1)− f(OPTi) ≤ (f(Xi)− f(Xi−1)) + (f(Yi)− f(Yi−1)).

Proof. Assume wlog that a ≥ b at iteration i, the other case following analogously. Then Xi =
Xi−1 ∪ {ei} and Yi = Yi−1. Hence,

(f(Xi)− f(Xi−1)) + (f(Yi)− f(Yi−1)) = a.

First assume ei ∈ OPT . Then OPTi−1 = OPTi, hence f(OPTi−1)− f(OPTi) = 0. The statement
follows since

a ≥ 1

2
(a+ b) ≥ 0,

where last inequality follows by Exercise 12.
Hence, we can assume that ei /∈ OPT , which implies OPTi \OPTi−1 = {ei}. Then:

f(OPTi−1)− f(OPTi) = f(OPTi−1)− f(OPTi−1 ∪ {ei})

≤ f(Yi−1 \ {ei})− f(Yi) (by Lemma 1, since Yi ⊇ OPTi−1)

= b (by definition)

≤ a (by hypothesis),

concluding the proof.

By summing over all local changes, we have:

n∑
i=1

f(OPTi−1)− f(OPTi)︸ ︷︷ ︸
f(OPT0)−f(OPTn)

≤
n∑

i=1

(f(Xi)− f(Xi−1))︸ ︷︷ ︸
f(Xn)−f(X0)

+

n∑
i=1

(f(Yi)− f(Yi−1))︸ ︷︷ ︸
f(Yn)−f(Y0)

16

As f(Y0), f(X0) ≥ 0, OPT0 = OPT and Xn = Yn = OPTn is the output of Algorithm 5, we
deduce:

f(OPT0︸ ︷︷ ︸
OPT

)− f(OPTn︸ ︷︷ ︸
Xn

) ≤ f(Xn)− f(X0)︸ ︷︷ ︸
≥0

+f(Yn︸︷︷︸
Xn

)− f(Y0)︸ ︷︷ ︸
≥0

⇒ f(OPT) ≤ 3f(Xn),

concluding the proof.

Consider the modification of Algorithm 5 that replaces Steps from 4 to 7 with the following:

Let a′ = max(a, 0) and b′ = max(b′, 0). If b′ = 0, set Xi = Xi−1 ∪ {ei}, Yi = Yi−1.
Else, with probability a′/(a′ + b′), set Xi = Xi−1 ∪ {ei}, Yi = Yi−1. With the
complement probability, set Xi = Xi−1, Yi = Yi−1 \ {ei}.

This algorithm is called randomized double greedy.

Theorem 15. The randomized double greedy outputs a 1
2 -approximation in expectation to MAX-C.

We refer to [2] for the proof of Theorem 15. It can be shown it is NP-Hard to obtain an
approximation strictly better than 1/2 for MAX-C.

3 Minimizing a submodular function

Unlike its maximization counterpart, the problem MIN-SF:

Given: A submodular function f : 2V → R.
Find : A set ∅ ⊆ X ⊆ V that minimizes f(X).

can be solved with a polynomial number of oracle calls. As next example shows, it generalizes the
matroid intersection problem.

Example 9. (Matroid intersection via submodular functions) Let M1 = (S, I1) and M2 = (S, I2)
be two matroids on the same finite ground set S, with rank functions r1 and r2, respectively. For
A ⊆ S, let

f(A) := r1(A) + r2(S \A).

Since the rank function of a matroid is submodular, both r1 and r2 are submodular. Using Lemma 2
and Exercise 2, we deduce that f is submodular. From the matroid intersection theorem, we know
that the maximum size of a common independent set is given by

min f(A) : A ⊆ S.

Hence, by minimizing a submodular function, we can obtain the maximum cardinality of a common
independent set.

17

3.1 An algorithm for f symmetric

Assume first that f is symmetric. We call MIN-SSF the following problem:

Given: A symmetric submodular function f : 2V → R.
Find : A set ∅ (X (V that minimizes f(X).

Note that in this case we are excluding ∅ and its symmetric V from being possible outputs.
This is because, for a symmetric submodular function, they are always the minimizers. Indeed,
when f is symmetric, for each set A ⊆ V , we have:

2f(V) = 2f(∅) = f(∅) + f(V) ≤ f(A) + f(V \A) = 2f(A).

Recall that we have already seen in class an algorithm that solves a special case of MIN-SSF,
namely, when f is the cut function of a graph. The algorithm we propose is in fact a generalization
of that. It has |V | rounds. At the first round, it finds a special pair of elements (x, y), with
x 6= y ∈ V , with the property that

f({x}) = min{f(S) : {x} ⊆ S ⊆ V \ {y}}. (11)

(Note that even the existence of a special pair is non-trivial and requires a proof). Hence, x would
be the optimal solution of our problem if we knew that exactly one of x and y is in the optimal
solution. This may not be the case, however. Hence, we store the set {x}, and produce a new
function f ′ over subsets of V ′ := V \ {x} by “gluing” the nodes x and y as follows:

f ′(S) =

{
f(S) if y /∈ S
f(S ∪ {x}) otherwise

. (12)

It is easy to see that, if f is a symmetric submodular fuction, so is f ′. Moreover, the following
holds.

Lemma 16. Let f, x, y, V, V ′ be defined as above. Let S∗ be the optimal solution of MIN-SSF on
input f ′, and assume wlog that y /∈ S∗. Then either {x} or S∗ is an optimal solution to MIN-SSF
on input f .

Proof. Suppose {x} is not an optimal solution to MIN-SSF on input f . Then, by (11), there is an
optimal solution that does not contain either x or y. Call this solution S′. Hence f ′(S′) = f(S′).
On the other hand, f(S∗) = f ′(S∗) ≤ f ′(S′) = f(S′), hence S∗ is also an optimal solution.

The algorithm therefore iteratively finds a special pair, stores the element x found, and creates
f ′, until the ground set is small enough.

The correctness of Algorithm 6 follows from the discussion above. Its running time depends
on the time needed to find a special pair. We now show that a special pair can be found by
Algorithm 7, hence concluding the following.

Theorem 17. Algorithm 6 solves MIN-SSF with O(|V |3) oracle calls.

The correctness of Algorithm 7 follows from the following lemma, where we assume S0 = ∅.

Lemma 18. For i = 1, . . . , n− 1, for each T ⊆ Si−1 and for each v ∈ V \ Si, the following holds:

f(Si) + f({v}) ≤ f(Si \ T) + f(T ∪ {v}). (13)

18

Algorithm 6 Algorithm to minimize a symmetric submodular function

Require: A symmetric submodular function f : 2V → R.
1: if V = {x, y} then
2: return {x}.
3: end if
4: Find a special pair (x, y) for f .
5: create f ′ from f as in (12).
6: Recursively call the algorithm on input f ′, and let S∗ be the optimal solution of MIN-SSF on

input f ′ that does not contain y.
7: return arg min{f(S∗), f({x})}.

Algorithm 7 Algorithm that finds a special pair (x, y)

Require: A symmetric submodular function f : 2V → R, with n = |V |.
1: Set S1 = {v} for some v ∈ V .
2: for i = 2, . . . , n do
3: for v ∈ V \ Si−1 do
4: Let key(v) := f(Si−1 ∪ {v})− f({v}).
5: end for
6: Let τi ∈ arg min{key(v) : v ∈ V \ Si−1}.
7: Set Si = Si−1 ∪ {τi}.
8: end for
9: return (τn, τn−1).

Proof. We prove the statement by induction on i. When i = 1, the only choice is T = ∅, and (13)
reads

f(S1) + f({v}) ≤ f(S1) + f({v})

which is clearly true for each v ∈ V \ S1.
Now assume the statement is true up to i−1 and we will show the claim for i. Choose v ∈ V \Si

and T ⊆ Si−1, and define j := max{` : τ` ∈ T}. Hence T ⊆ Sj . We will consider the following two
cases. First, if j = i− 1, then

f(Si \ T) + f(T ∪ {v}) = f(Si−1 ∪ {τi} \ T) + f(T ∪ {v})

≥ f(Si−1) + f({τi})− f
(
Si−1 \ (Si−1 \ T)

)
+ f(T ∪ {v})

= f(Si−1) + f({τi})− f(T) + f(T ∪ {v})

≥ f(Si−1 ∪ {v}) + f({τi})

≥ f({v}) + f(Si−1 ∪ {τi})

= f({v}) + f(Si),

as required. The first inequality is by induction with i = i − 1, T = Si−1 \ T and v = τi. The
second inequality follows from (1) with A = Si−1 and B = T ∪ {v}. The last inequality is by the
choice of τi.

Exercise 13. Show that, if j < i− 1, f(Si \ T) + f(T ∪ {v}) ≥ f(Si) + f({v}).

19

We now conclude the proof that Algorithm 7 finds a special pair. Let x = τn and y = τn−1.
Apply Lemma 18 with i = n− 1. Take any {x} ⊆ T ′ ⊆ V \ {y} and set T := Sn−2 \ T ′. We deduce

f(V \ {x}) + f({x}) ≤ f(T ′) + f(V \ T ′),

and the statement follows from symmetry of f .

3.2 The Lovasz extension and an algorithm for MIN-SF

In this section, we see an algorithm for solving MIN-SF. Although more efficient (also, more complex)
algorithms for MIN-SF exist, the one we present in here builds on three nice ingredients:

(a) the Ellipsoid method for convex optimization;

(b) a continuous, convex extension f− of a discrete function f with domain {0, 1}n;

(c) an efficiently computable extension fL of f as above, that coincides with f− if and only if f is
submodular. fL is called the Lovasz extension.

(a) The Ellipsoid method for convex optimization. The Ellipsoid method can be employed
to obtain, in polynomial time, the optimum solution to a linear program. Under similar hypothesis,
it can be employed to approximately solve convex optimization problems in polynomial time. The
next statements are not too formal, but will be enough for our purposes. Let f− : Rn → R be a
convex function and K ⊆ Rn a convex set. Suppose that we have access to an evaluation oracle for
both f− and its gradient: that is, given x̄ ∈ K, the oracle outputs f−(x̄) and ∇f−(x̄). Suppose
moreover that we have a separation oracle that, given a point x̄ ∈ Rn, either concludes that x̄ ∈ K,
or gives an inequality cTx ≤ δ valid for K but violated by x̄. Last, suppose that we know of a “not
too large” ellipsoid containing K. Then, we can find a point that is “almost” in K and “almost”
realizes the minimum of f− over K, with a number of calls to the oracles that is polynomial in
the size of the problem and in the required approximation guarantee. Under additional hypothesis,
some of the conditions above can be dropped and we can actually find the minimum of f− over
K. Those additional hypothesis will be satisfied by our problem. In particular, our goal will be to
reduce MIN-SF over f to a minimization of a convex function f− over a convex set K, such that
there is a polynomial-time oracle for evaluating f− and for separating over K. As usual, we assume
that to we have a polynomial-time oracle for computing the submodular function f .

(b) The convex closure. Given a function f : 2V → R, we let n = |V | and interpret f as a
function with domain {0, 1}n, where we let xS ∈ {0, 1}n be the point with support S, and we let
f(xS) = f(S) for all S ⊆ V . The convex closure of f is the function with domain [0, 1]n defined as
follows:

f−(x) = min {
∑
S⊆V

αSf(S) :

∑
S⊆V

αSxS = x,
∑
S⊆V

αS = 1, αS ≥ 0}. (14)

For a given x ∈ Rn, we call a vector that satisfies constraints from (14) a feasible multiplier for
x; if it moreover achieves the minimum above, we call it an optimal multiplier for x.

20

In order to parse this definition, let’s first observe that a “natural” extension of f would associate
to a point x ∈ [0, 1]n that can be obtained as a convex combination of points of the hypercube,
the combination, with the same multipliers, of the function evaluated at those points. Note that
each feasible multiplier is associated to a convex combinations of points in {0, 1}n producing x.
However, there are many such combinations, so which one should we pick to define f−? We choose
the one giving the minimum possible value. This explains the notation f−. Its name is motivated
by the following.

Lemma 19. Let f, f− be as above. Then f− is convex.

Proof. Let x, y ∈ [0, 1]n, λ ∈ [0, 1], and z = λx+(1−λ)y. Let αx (resp. αy) be an optimal multiplier
for x (resp. y). For S ⊆ V , define

αz
S = λαx

S + (1− λ)αy
S ≥ 0

Since ∑
S⊆V

αz
S = λ

∑
S⊆V

αx
S + (1− λ)

∑
S⊆V

αy
S = 1

and ∑
S⊆V

αz
SxS = λ

∑
S⊆V

αx
SxS + (1− λ)

∑
S⊆V

ySα
y
S = λx+ (1− λ)y = z,

we deduce that αz is a feasible multiplier for z. We have therefore

f−(z) ≤
∑
S⊆V

(λαx
S + (1− λ)αy

S)f(S) = λf(x) + (1− λ)f(y),

as required.

Note that the minimum of f− over [0, 1]n is achieved at a vertex. Therefore, we can solve
MIN-SF by computing the minimum of f− over [0, 1]n. As clearly [0, 1]n has a polytime separation
oracle, all we have left to describe is a polytime oracle for evaluating f−. This is described next.
(c) The Lovasz extension. Define the Lovasz extension fL : [0, 1]n → R of f as follows. For
each x ∈ [0, 1]n, we have:

fL(x) :=
n∑

i=0

λ∗i f(S∗i),

where ∅ = S∗0 (S∗1 (S∗2 (· · · (S∗n = V , and λ∗0, λ
∗
1, . . . , λ

∗
n are defined as follows: suppose

entries in V = {1, . . . , n} are ordered so that xi ≥ xi+1 for i ∈ [n − 1]. Then, set for i ∈ [n]
S∗i := {x1, . . . , xi} and λ∗i := xi − xi+1 (with xn+1 := 0), and λ∗0 := 1−

∑n
i=1 λ

∗
i .

Observe that λ∗ is a feasible multiplier for x (letting λ∗S = 0 for all S∗ 6= S∗0 , . . . , S
∗
n). Indeed,

clearly λ∗ ≥ 0,
∑n

i=0 λ
∗
i = 1, and for j ∈ [n] we have:

(
n∑

i=0

λ∗ixSi)j =

n∑
`=j

λ∗` =

n∑
`=j

(x` − x`+1) = xj − xn+1 = xj .

Hence, fL(x) ≥ f−(x) for all x ∈ [0, 1]n. Moreover, fL(x) can be computed efficiently, but we
expect in general fL 6= f−. However, they coincide if and only if f is submodular. Once this is
shown, we can conclude that MIN-SF can be solved in polynomial time.

We first observe first the following. A family of sets ∅ = S0 (S1 (S1 (. . . Sn = V is called a
chain.

21

Lemma 20. Let x ∈ [0, 1]n and λ be a feasible multiplier for x whose support is a chain ∅ = S0 (
· · · (Sn = V . Then fL(x̄) =

∑n
i=0 λif(Si).

Proof. Observe that, if i ∈ S`, j /∈ S`, for some i, j, ` ∈ [n], then we have xi ≥ xj . If moreover
xi = xj , then it must be that λ` = 0. Hence, without loss of generality, we have that S∗` = S` for
each ` ∈ [n]. Then λ satisfies

λ(S∗1) = x1 − x2

λ(S∗2) = x2 − x3

. . .
λ(S∗n) = xn.

As the constraint matrix of the system is invertible and λ∗ is one feasible solution, we conclude
that λ = λ∗.

Lemma 21. f− = fL if and only if f is submodular.

Proof. Suppose first f is submodular, and let x ∈ [0, 1]n. Among all optimal multipliers α for x,
let α∗ be one that maximizes

∑
S⊆V αS |S|2.

We claim that the support of α is a chain for x, and then the statement follows by Lemma 20.
Suppose by contradiction that there exists A,B ∈ V with α∗A ≥ α∗B > 0, A ∩ B,A ∪ B 6= A,B.
Consider ᾱ constructed from α∗ as follows: for S ⊆ V , we have

ᾱS :=

α∗S − α∗B if S = A,B

α∗S + α∗B if S = A ∪B,A ∩B
α∗S otherwise.

.

Let us first verify that ᾱ is a feasible multiplier for x. Clearly ᾱ ≥ 0 and
∑

S⊆V ᾱS = 1. We
have: ∑

S⊆V
ᾱSxS =

∑
S⊆V,S 6=A,B,A∩B,A∪B

α∗SxS +
∑

S=A,B,A∩B,A∪B
ᾱSxS ,

hence, to show
∑

S⊆V ᾱSxS = x, it suffices to observe that for j ∈ [n], we have

χ(j ∈ A) + χ(j ∈ B) = χ(j ∈ A ∪B) + χ(j ∈ A ∩B),

where χ(X) = 1 if event X holds and χ(X) = 0 otherwise. This shows that ᾱ is a feasible multiplier
for x. Moreover, we have:∑

S⊆V
ᾱSf(xS) =

∑
S⊆V,S 6=A,B,A∩B,A∪B

α∗Sf(xS) +
∑

S=A,B,A∩B,A∪B
ᾱSf(xS)

=
∑
S⊆V

α∗Sf(xS) + α∗B(f(A ∪B) + f(A ∩B)− (f(A) + f(B)))

≤
∑
S⊆V

α∗Sf(xS),

where last inequality holds by submodularity.
Hence, ᾱ satisfies f−(x) =

∑
S⊆V ᾱSf(S). On the other hand,∑

S⊆V
ᾱS |S|2 =

∑
S⊆V

α∗S |S|2 + α∗B(|A ∪B|2 + |A ∩B|2 − (|A|2 + |B|2)) >
∑
S⊆V

α∗S |S|2,

22

a contradiction, where in the last inequality we used that

|A∪B|2 + |A∩B|2 = (|A|+ |B \A|)2 + (|B|− |B \A|)2 = |A|2 + |B|2 + 2|B \A|(|A|− |B|+ |B \A|).

We now show the other direction. Assume that f is not submodular. Then, by Exercise 1, there
exists i, j /∈ S ⊆ V such that

f(S ∪ {i})− f(S) < f(S ∪ {i, j})− f(S ∪ {j}). (15)

Let x = xS + 1
2x{i,j}. We have λ∗S∪{i,j} = 1

2 , λ∗S = 1
2 , hence fL(x) = 1

2f(S) + 1
2f(S ∪ {i, j}). On

the other hand a feasible multiplier α is:

αT =

{
1
2 if T = S ∪ {i} or T = S ∪ {j}
0 otherwise,

and using (15), we have:

f−(x) ≤ 1

2
f(S ∪ {i}) +

1

2
f(S ∪ {j}) < 1

2
f(S) +

1

2
f(S ∪ {i, j}) = fL(x),

showing fL 6= f−.

Exercise 14. In this exercise, we see another proof that the Lovasz extension of a submodular
function is convex. Let us start by proving an auxiliary fact.

(a) Let K,K ′ ⊆ Rn be bounded convex sets, and for x ∈ K ′, let g(x) := maxz∈K xT z. Prove that
g(x) is convex over K ′.

We can assume without loss of generality f(∅) = 0, since we can always translate f so that the
equality holds. For questions (b)-(c)-(d) below, fix x ∈ [0, 1]n. Define z∗ ∈ Rn as follows: for i ∈ V ,
let z∗i = f(S∗i)− f(S∗i−1).

(b) Show xT z∗ = fL(x).

Now consider the following LP (recall here that x is fixed, and z is the set of variables):

max xT z
(P) s.t. z(S) ≤ f(S) for S ⊆ V

z(V) = f(V)

(c) Show that z∗ is feasible for (P).

(d) Using LP duality, show that z∗ is optimal for (P).

(e) Conclude that fL is convex.

23

3.2.1 An application of the Lovasz’s extension: the fractional Sandwich theorem

For a finite set V , a function f : 2V → R is supermodular if −f is submodular or, equivalently, if
for every A,B ⊆ 2V we have:

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B). (16)

A function that is submodular and supermodular is called modular. As next exercise show,
modular functions can be thought of as the discrete analogous of linear functions.

Exercise 15. Let f : 2V → R. f is modular if and only if there exist w : V → R such that
f(S) =

∑
e∈S w(e) for every S ⊆ V .

The following is a discrete analogous of a famous result on convex functions.

Theorem 22 (Sandwich Theorem). Let f, g : 2V → R, with f submodular, g supermodular and
f(S) ≥ g(S) for all S ⊆ V (in short, we write f ≥ g). Then there exists a modular function
h : 2V → R with f ≥ h ≥ g. Moreover, if f, g are integer-valued, so is h.

The first statement of the Sandwich Theorem easily follows from the results from the previous
section (the second is substantially harder to prove). For f, g as in the statement of the theorem,
f− in convex and g− is concave. By construction, f− ≥ g−. Hence, we can apply a classical result
from convexity theory and conclude that there exists a linear function h∗ : [0, 1]V → R such that
g− ≤ h∗ ≤ f−. Using Exercise 15, we conclude that the restriction of h∗ to {0, 1}V – call if h – is
modular. By construction, g ≤ h ≤ f .

24

4 Solutions to selected exercises

Solution to Exercise 2. For A,B ⊆ V , we have:

g(A) + g(B) = f(V \A) + f(V \B)

≥ f((V \A) ∩ (V \B)) + f((V \A) ∪ (V \B))

= f(V \ (A ∪B)) + f(V \ (A ∩B))

= g(A ∪B) + g(A ∩B).

Solution to Exercise 3. For disjoint sets U,U ′ ⊆ V , denote by δ(U,U ′) the set of all edges with
one endpoint in U , and the other in U ′. Let A,B ⊆ V . We have:

δ(A) = δ(A ∩B,B \A) + δ(A \B,B \A) + δ(A \B, V \ (A ∪B)) + δ(A ∩B, V \ (A ∪B));
δ(B) = δ(A ∩B,A \B) + δ(A \B,B \A) + δ(B \A, V \ (A ∪B)) + δ(A ∩B, V \ (A ∪B));
δ(A ∪B) = δ(A ∩B,A \B) + δ(A \B, V \ (A ∪B)) + δ(B \A, V \ (A ∪B));
δ(A ∩B) = δ(A ∩B,A \B) + δ(A ∩B,B \A) + δ(A ∩B, V \ (A ∪B)).

We conclude therefore:

w(δ(A))+w(δ(B)) = w(δ(A∪B))+w(δ(A∩B))+2w(δ(A\B,B\A)) ≥ w(δ(A∪B))+w(δ(A∩B)),

as required, where in the last inequality we used w ≥ 0.

Solution to Exercise 4. Let A,B ⊆ E. Take any vertex v ∈ V and consider the following three
cases. If v is adjacent to an edge that is in exactly one of A and B, then it contributes 1 to both
f(A) + f(B) and f(A ∩B) + f(A ∪B). If v is not adjacent to any edge of A ∪B, then it does not
contribute to any of f(A), f(B), f(A ∩ B), f(A ∪ B). Lastly, if v is adjacent to both A and B, it
contributes 2 to f(A) + f(B). Thus, we conclude f(A) + f(B) ≥ f(A∩B) + f(A∪B), as required.

Solution to Exercise 5. See [1].

Solution to Exercise 6. Let X ,Y ⊆ Z, and s be a string. If s contributes to ICG(X ∩ Y) but
not to ICG(X ∪ Y), then s is a substring of S ∈ X ∩ Y and of S′ ∈ (X \ Y) ∪ (Y \ X). Hence, it
contributes to at least one of ICG(X) and ICG(Y). A similar conclusion holds if s contributes to
ICG(X ∪Y) but not to ICG(X ∩Y). Now suppose s contributes to both ICG(X ∪Y) and ICG(X ∩Y).
This means there exist S ∈ X ∩ Y and S′ ∈ Z \ (X ∪ Y) that have s as a subsequence. Hence, s
contributes to both ICG(X) and ICG(Y). Hence (1) holds.

Solution to Exercise 9. We modify the proof of the greedy algorithm, employing the same
notation. We have:

f(S∗)− f(S`) ≤ f(S∗ ∪ S`)− f(S`) (by monotonicity)
≤ 1

q(f)

∑k
i=1(f(S` ∪ {ei})− f(S`)) (by definition of q(f))

≤ k
q(f)(f(S`+1)− f(S`)) (by the greedy procedure).

Hence, we have:

f(S`+1)− f(S`) ≥
q(f)

k
(f(S∗)− f(S`)) ⇔ f(S∗)− f(S`+1) ≤ (1− q(f)

k
)(f(S∗)− f(S`)).

25

We conclude:

f(S∗)− f(Sk) ≤ (1− q(f)
k)(f(S∗)− f(Sk−1)

≤ (1− q(f)
k)2(f(S∗)− f(Sk−2))

≤ ... ≤ (1− q(f)
k)k((f(S∗)− f(S0))

≤ (1− q(f)
k)kf(S∗) (by nonnegativity)

≤ e−q(f)f(S∗).

Solution to Exercise 10. Repeat the solution of Exercise 9, this time with S∗ being the optimal
solution to our new problem (note that, in the analysis, we never used the optimality of S∗). Hence,
at every step ` of the algorithm, we have:

f(S∗)− f(S`) ≤ (1− q(f)

k∗
)`f(S∗),

where k∗ := |S∗|. Hence, if we let k̄ = |S|, we have:

f(S∗)− f(Sk̄−1) ≤ (1− q(f)

k∗
)k̄−1f(S∗) ≤ e−

q(f)
k∗ (k̄−1)f(S∗) ⇔ 1 ≤ e−

q(f)
k∗ (k̄−1) f(S∗)

f(S∗)− f(Sk̄−1)
.

Taking the logarithm, we obtain:

0 ≤ −q(f)

k∗
(k̄ − 1)+log(

f(S∗)

f(S∗)− f(Sk̄−1)
) ≤ −q(f)

k∗
(k̄ − 1)+log(

t

t− f(Sk̄−1)
) ≤ −q(f)

k∗
(k̄ − 1)+log t,

where in the second inequality we used f(S∗) ≥ t and in the third f(S∗)− f(Sk̄−1) ≥ 1, since f is
integer-valued. Rearranging gives the thesis.

Solution to Exercise 11. By hypothesis, for ` ≤ `∗−2, we have S`∪{e`+1} = S`+1. By iteratively
applying the last inequality deduced in the main part of the proof, we conclude

g(S`∗−1 ∪ {e`∗}) ≥ g(S∗) + (1− w(e`∗)
B′)(g(S`∗−1)− g(S∗))

≥ g(S∗) + (1− w(e`∗)
B′)(1− w(e`∗−1)

B′)(g(S`∗−2)− g(S∗))

≥ ... ≥ g(S∗) +
∏

j=1,...,`∗(1−
w(ej)
B′)(g(Y)− g(S∗))

≥ g(S∗)(1− (
∏

j=1,...,`∗(1−
w(ej)
B′))) (using g(Y) = 0)

≥ g(S∗)(1− e−(
∑`∗

j=1 w(ej)/B′)) (using (1− x) ≤ e−x)

≥ g(S∗)(1− 1
e) (since

∑`∗

j=1w(ej) > B′).

Solution to Exercise 12. Observe that, at every iteration i, (Xi ∪ {ei}) ∪ (Yi \ {ei}) = Yi−1 and
(Xi ∪ {ei}) ∩ (Yi \ {ei}) = Xi−1. Then using submodularity:

a+ b = f(Xi ∪ {ei}︸ ︷︷ ︸
A

)− f(Xi−1︸ ︷︷ ︸
A∩B

) + f(Yi \ {ei}︸ ︷︷ ︸
B

)− f(Yi−1︸︷︷︸
A∩B

) ≥ 0.

26

Solution to Exercise 13. We have:

f(Si \ T) + f(T ∪ {v}) ≥ f(Si \ T) + f(Sj+1)− f(Sj+1 \ T) + f({v})

≥ f(Sj+1 \ T) + f(Si)− f(Sj+1 \ T) + f({v})

= f(Si) + f({v}),

as required. The first inequality is by induction with i = j + 1, T = T , v = v, and the second
inequality is by (1) with A = Si \ T and B = Sj+1.

Solution to Exercise 14.

(a) Let y, x ∈ K ′, λ ∈ [0, 1], and w = λx+ (1− λ)y. Then

g(w) = max
z∈K′

wT z = max
z∈K′

(λ(xT z)+(1−λ)(yT z)) ≤ λmax
z∈K′

(xT z)+(1−λ) max
z∈K′

(yT z) = λg(x)+(1−λ)g(y).

(b)

xT z∗ =

n∑
i=1

xi(f(S∗i)− f(S∗i−1)) =

n−1∑
i=1

(xi − xi+1)f(S∗i) + xnf(S∗n) =

n∑
i=1

λ∗i f(S∗i) = fL(x),

where in the last equality we used the definition of fL and that we assumed f(∅) = 0.

Before we move on, it is useful to gain some intuition on why this is a reasonable candidate to
the optimal solution of (P). By hypothesis, z1 has the highest coefficient in the objective function.
Hence, we would like the corresponding variable to be as large as possible. Since we must have

z1 ≤ f({z1}) = f(S∗1),

we set z∗1 = f(S∗1)− f(S∗0) = f(S∗1). Next in line is z2. Since it must hold

z1 + z2 ≤ f({z1, z2}) = f(S∗2)

and we already set z∗1 = f(S∗1), we set z∗2 = f(S∗2)− z∗1 = f(S∗2)− f(S∗1), etc. Hence, z∗ can be seen
as the outcome of a greedy procedure, where at each step we choose to the unassigned variable
with highest coefficient the largest possible value.

(c) f(V) = z∗(V) follows by telescopic sum. We show z∗(S) ≤ f(S) for all S ⊆ V by induction
on |S|. For base case S = ∅, z∗(S) = f(S) = 0. Now consider S and take i to be the
largest index in S. Take A = S and B = S∗i \ {i} and apply the definition of submodularity
f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) with A = S∗i \ {i} and B = S:

f(S) ≥ f(S∗i)− f(S∗i \ {i}︸ ︷︷ ︸
S∗i−1

) + f(S \ {i}) = z∗i + f(S \ {i}) ≥ z∗i + z∗(S \ {i∗}) = z∗(S),

where the last inequality follows by inductive hypothesis.

27

(d) The dual of (P) is as follows:

min
∑

S⊆V f(S)yS
(D) s.t.

∑
S⊆V :i∈S yS = xi for i ∈ V

yS ≥ 0 for S (V .

Observe that, for i ∈ {0, . . . , n}, we have:

z∗(S∗i) =
n∑
`=i

(f(S∗i)− f(S∗i+1)) = f(S∗i).

Hence, because of complementary slackness, we define an optimal dual solution that is possibly
non-zero in sets S∗i (only). For S ⊆ V , we define the following dual variables y∗:

y∗S =

xn if S = V

xi − xi+1 if S = S∗i for some i ∈ [n− 1]

0 otherwise.

By construction, xi ≥ xi+1 for all i ∈ [n− 1], thus y∗ ≥ 0. On the other hand, for i ∈ [n], we
have: ∑

S:i∈S
y∗S =

n−1∑
`=i

(x` − x`+1) + xn = xi,

hence y∗ is feasible for (D). Since (y∗, z∗) satisfy the complementary slackness, the thesis
follows.

(e) We have shown that the optimum of (P) has value xT z∗ = fL(x), and the thesis follows
immediately from applying part (a).

28

5 Sources

Properties and examples from Section 1 are mostly classical, with Example 4 appearing in [1],
Example 6 appearing in [7] and concepts from Section 1.2 appearing in [3]. Results from Section 2.1
appeared in [9]. Results from Section 2.2 appeared in [11]. Results from Section 2.4 appeared
in [2]. Results from Section 2.3 have appeared in [4]. Results from Section 3.1 appeared in [10]. An
algorithm for minimizing a submodular function using the ellipsoid method appeared in [6], while
our treatment of the topic is heavily inspired by [8; 12]. The Sandwhich Theorem has appeared
in [5].

References

[1] Aprile, M., Conforti, M., Faenza, Y., Fiorini, S., Huynh, T., Macchia, M. (2020). Recognizing
Cartesian products of matrices and polytopes. Proceedings of CTW 2020.

[2] Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R. (2015). A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM Journal on Computing, 44(5),
1384–1402.

[3] Das, A. and Kempe, D. (2018). Approximate submodularity and its applications: Subset selec-
tion, sparse approximation and dictionary selection. The Journal of Machine Learning Research,
19(1), 74–107.

[4] Fisher, M. L., Nemhauser, G. L., and Wolsey, L. A. (1978). An analysis of approximations for
maximizing submodular set functions—II. In Polyhedral combinatorics (pp. 73–87). Springer,
Berlin, Heidelberg.

[5] Frank, A. Finding feasible vectors of Edmonds-Giles polyhedra. Journal of Combinatorial The-
ory, Series B 36.3 (1984): 221–239.

[6] Grötschel, M., Lovász, L., and Schrijver, A. (1984). Geometric algorithms and combinatorial
optimization.

[7] D. Kempe, J. Kleinberg, and E. Tardos (2003). Maximizing the spread of influence through a
social network. Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 137–146.

[8] Kothari, P. (2016) Submodular Functions, Lovasz Extension and Minimization. Lecture from
the class COS521: Advanced Algorithm Design, Princeton.

[9] Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of approximations for
maximizing submodular set functions—I. Mathematical programming, 14(1), 265–294.

[10] Queyranne, M. (1998). Minimizing symmetric submodular functions. Mathematical Program-
ming, 82(1-2), 3-12.

[11] Sviridenko, M. (2004). A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters 32.1: 41–43.

[12] Vondràk, J. (2010). Continuous extensions of submodular functions. Lecture from the class
CS369P: Polyhedral techniques in combinatorial optimization, Stanford.

29

	Definition, basic properties, and examples
	Examples
	Measuring how ``close to submodular'' a nonnegative function is

	Maximizing a submodular function
	Monotone, with cardinality constraint
	Some consequences of the greedy algorithm

	Monotone, with knapsack constraint
	Monotone, with matroid constraint
	Non-monotone

	Minimizing a submodular function
	An algorithm for f symmetric
	The Lovasz extension and an algorithm for MIN-SF
	An application of the Lovasz's extension: the fractional Sandwich theorem

	Solutions to selected exercises
	Sources

