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Recap: Discrete distributions

Bernoulli trials: (like coin tossing)

o Each trial has two outcomes: denoted as S (success) and F (failure).
o For each trial, P(S) =p and P(F)=¢=1—p.

o The trials are independent.

Bernoulli distribution: P(X = 1) = p, P(X = 0) = 1 — p, denoted by
X ~ Bernoulli(p)

o EX = p, Var(X) = p(1 — p)

Binomial distribution: the number of successes in a Bernoulli process
with n trials and probability of success p

o

X;: the Bernoulli r.v. corresponding to i-th Bernoulli trial, then the
Binomial rv. X =371 | X;.
pmf: p(k) =P(X =z) = (7)p“(1 — p)"~*, where = 0,...,n.

cdf: P(X <z)=3%7 P(X =2)
EX = np, Var(X) = np(1 — p)

o

o

o



Recap: Discrete distributions

Geometric distribution: The number of Bernoulli trials until we first get
an "S", denoted by X ~ Geometric(p).

o pmf: p(z) =P(X = x) = P({F.....F S}) = ¢°!p, where z = 1,2, ...

—
(z—1) F's
o cdf: F(z)=1-P(X >2) =1 —P({F....F}) =1—¢°

o EX = 1/p, Var(X) = 1/p?

Hyper-geometric distribution: There are N products in total with M
defect ones and N — M good ones. We sample n from these N products

without replacement. X be the number of defect products
M)(NfM

o pmf: P(X =x) = %,if max{0,n — N+ M} <z < min{n, M}
and P(X =2)=0 elsewhere.

M
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Recap: Continuous distribution
Uniform distribution: (on [A, B]) if:

- A<z<B
o pdfis f(x)z{B_A’ =T=

0, elsewhere
0, r< A

o cdf is F(z) = ]9__”.),__’2, A<z <B
1, z>B

Normal distribution (or Gaussian distribution): X ~ N(u,o?)
o N(0,1): standard normal distribution, pdf ¢, cdf ®

pdf: f(x) = ﬁexp{—(z{g‘;)z}, —00 < < 400

EX = u, Var(X) = o2.

pdf f is symmetric around p: f(x — p) = f(x + p) for any z
(Standardization) Z = % ~ N(0,1).

o ¢ is symmetric around 0: ¢(z) = ¢(—x) for any z.

o &(—x)=1— ®(z) for any z

o

o

o

o



Recap: Sum of independent normal variables

Suppose X ~ N(ux,0%), Y ~ N(,uy,ay) and X 1L Y.
Theorem: X +Y ~ N(ux + py,0% + o)

Warning: This only holds when X and Y are independent!
Counter-example when X £ Y: Y =-X

Consequence:

° X;~ N(pi,0f). Then 30, X; ~ N (32 i, 321y 0F)

o Xi,.., Xy "R N(,02). Then L5 X ~ N (i, 02/n)

Proof: By induction: Y"1 | X; ~ N(fi,52). Next we will find /i and 5°.
Since X;'s are independent: o =E(> """ | X;) = >0 .
0% = Var(3iL, Xi) = 327y Var(Xy) = 30, of

Review the "linearity' of expectation and variance from last lecture:

Suppose Xi,..., X, are independent. a,...,ay,,b are constants.
o B0 (a;iXi) + 0] = S0 (aEX; +b)
o Var[} i (a; X;) +b] = Y1t afVar(X;)



Recap: Continuous distribution

Exponential distribution: X ~ Exp(})

o pdf: f(z) = Aexp(—Az), x>0

o cdf: F(x)=1—exp(—Az), z>0.

o EX = A~1, Var(X) = A2

o Memoryless property: P(X > a+ z|X > a) =P(X > x)



Summary: some commonly used distributions

Discrete distributions:

o

Bernoulli distribution

o

Binomial distribution

Geometric distribution

o

o Hyper-geometric distribution

Poisson distribution

(o]

Continuous distributions:
o Uniform distribution

o Normal distribution

o Exponential distribution
o x2-distribution
t-distribution
F-distribution

o

o



Weak Law of Large Numbers



Recap: Population universe and sample universe
Sample universe (what we see) Population universe (inaccessible)

Data = Probability distribution =

o

o Sample mean Expectation/Mean

o Sample variance o Variance

[e]

o Sample standard deviation Standard deviation

o Sample quantiles (sample median, o Quantiles (median, quartiles

quartiles...) )
o Sample maximum/minimum o Maximum/minimum
o Sample covariance/correlation o Covariance/correlation

o

o Bar chart (discrete r.v.) pmf (discrete r.v.)

o

o Histogram (continuous r.v.) pdf (continuous r.v.)

Rationale: When we have enough samples and our model assumption is
close to the actual distribution, then the sample-version data summaries
will be close to the underlying population-version ones.



Weak law of large numbers

Theorem: X, .., X, are i.i.d. r.v.'s following the same distribution of X.
If EX exists!, then X = %Zi:l X satisfies that for any € > 0,

P(|X —EX|>¢)~0, whenn is large.

o If you don't understand this probability, no worries! You can understand
it as X ~ EX when the number of samples n is very large.

o This implies that sample mean is close to the population mean
(expectation) when n is large.

o This also implies that sample variance and standard deviation are close
to the population ones when n is large.
To see this, s = 5™ (X; - X)?= L. 57 X2 - . X%x
EX? — (EX)? = Var(X). And s &~ /Var(X) = SD(X).

o If X is discrete, then relative frequency at X = x equals
L3 1(Xi =2) # E[1(X = 2)] = the pmfat X =z i.e. P(X = z)

1This holds for all the distributions we have seen, e.g. Bernoulli, normal, exponential,
binomial, uniform, ..



Review: Explanation of the previous examples

Example 1: Rolling a die. What is the expected number of spots X on
the top?

PX=1)= —]P’(X:6)=
EX =1x5 L19x 6 -+ 6

55

sample mean
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Review: Explanation of the previous examples

Example 2: X follows a uniform distribution on [0, 1]. (i.e. pdf f(z) =1
on [0,1] ;imd 0 eIsewherel)
EX = [jzf(x)de = [; zdr = 2% b= 1.

| Moo

sample mean
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Review: Relative frequency bar chart and pmf

Suppose a r.v. X has distribution with this pmf. | sampled X7, Xo, ..,
X000 independently from this distribution.
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o Empirical relative frequency is an approximation of pmf.
o If we sample infinite points, the relative frequency will equal pmf.

o We-will-diseuss—more-on-thisnext-week: Now you know it's due to ...



Review: Density histogram and pdf

Suppose a r.v. X has distribution with this pmf. | sampled X, X5, ..,
X1000 independently from this distribution.
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o Empirical density histogram is an approximation of pdf.

o If we sample infinite points and the bin width is infinitely small, the
density histogram will be the same as the pdf curve.



Central Limit Theorem



Binomial pmf when n is large
pmf of Bin(n,1/3) = Y"i" | X;, where X; vig Bernoulli(1/3)
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Histogram of sum of uniform r.v's
Histogram of Y"1 | X;, where X; & Unif(0,1)
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Central limit theorem

Our guess: the sum of i.i.d. (independently and identically distributed)
r.v.'s is approximately normal distributed.

The guess is true!!!

Theorem: X1, .., X, are i.i.d. r.v.'s following the same distribution of X.
If EX = p and Var(X) = o2 exists?, then X =1 3. X satisfies

P<x/ﬁ(5f—u)

< a;) ~ ®(x), when nis large,
o

where @ is the cdf of standard normal distribution N (0, 1).

o This is saying that X approximately follows N (u, 02/n) when n is large
Recall that E(X) = p, Var(X) = o?/n.

o When X7, .., X, ~ N(u,0?), "~" will be "=" (by properties of normal
distribution).

o Equivalently, Y% | X; approximately follows N (nju,no?).

2This holds for all the distributions we have seen, e.g. Bernoulli, normal, exponential,
binomial, uniform, ..



Central limit theorem

Example 1: X, .., X, b Bernoulli(p). Then
nX =3, X; ~Bin(n,p). And EX; = p, Var(X;) = p(1 — p).
By CLT,

N d
X==% Xi=Np.p(l-p)/n),
1=1

= d
> Xi = N(np,np(1 - p)).
=1

d . T .
Notes: "~" means "approximately follows ... distribution when n is large"



Binomial pmf when n is large
pmf of Bin(n,1/3) = Y"i" | X;, where X; vig Bernoulli(1/3)
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Central limit theorem

Example 2: X, .., X, i

By CLT,

Unif(0,1). And EX; = 1/2,Var(X;) = 1/12.
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Histogram of sum of uniform r.v's

Histogram of > | X;, where X; ii.d.
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Normal approximation to the binomial
By CLT, X ~ Bin(n,p) can be approximated by N (np, np(1 — p)).
When n > 30, nmin(p, 1 — p) > 10, we can use the following normal

approximations to calculate binomial probability:
o Without continuity correction:

a—np _ X —np < b—np )
V(L =p) = /np(1=p) =~ /np(1 —p)

ch( b—mnp ) —<I>< a—mnp )
np(1 —p) np(l—p)
o With continuity correction:
Pla <X <b)=P(a—05< X <b+0.5)

_ (a—0.5—np< X —np <b+0.5—np>
Vnp(L—p) = /np(l—p) = /np(1 - p)

IP’(aﬁXﬁb):IP’(




Normal approximation to the binomial

When n > 30, nmin(p, 1 — p) > 10, we can approximate the binomial
probability with continuity correction:

o P(X =z) =P(z—0.5 < X <240.5) = q>(r+0~5—np) _q)<z_o.5_np)

V/np(1-p) np(1—p)
cPa<X<bh)=9 b+05-np | _ g a=0.5-np
- np(1—p) np(1—p)

P
o Pla< X <b)=Pla+1< X <b)= similar to above
Pla< X <b)=Pla< X <b—1)= similar to above
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Normal approximation to the binomial

Suppose that 25% of all students at a large public university receive
financial aid. Let X be the number of students in a random sample of size
50 who receive financial aid, so that p = 0.25. Calculate:

o the probability that at most 10 students receive aid

o the probability that between 5 and 15 (inclusive) of the selected
students receive aid

Check: n = 50 > 30, n min(p, 1 — p) = 12.5 > 10. Hence
d
X ~ Bin(50,0.25) ~ N(np,np(1 — p)) = N(12.5,9.375)

° _ X—12.5 10+0.5—12.5 ~ _ _
P(X <10) =P (—\/W < 104050125 ) ~ §(—0.65) = 0.2578

o (5-05-12.5  X—12.5 _ 1540.5—12.5) .
° P < X <15) _P( V9.375 < V9.375 < v9.375 ) -

$(2.61) — ®(—0.98) = 0.9955 — 0.1635 = 0.8320




Reading list (optional)

o "Probability and Statistics for Engineering and the Sciences" (9th
edition):
> Chapter 5.3 (skip examples of joint distribution), 5.4 and 5.5
o "Openlntro statistics" (4th edition, free online, download [here]):
> Chapter 5.1.3-5.1.6


https://leanpub.com/os
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