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Lecture 11: Point Estimation

Ye Tian

Department of Statistics, Columbia University
Calculus-based Introduction to Statistics (S1201)

July 27, 2022
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Where we are

◦ Goal of statistics: To make inferences on parameters of a
population, which are assumed to be fixed but unknown.
Examples: population proportion, mean, standard deviation, median etc.

◦ Two types of estimation:
⊲ Point estimation: use a single value as the estimate of the

parameter
⊲ Confidence interval: point out a range (interval) which is very

likely to cover the parameter
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Two types of estimation
Two types of estimation:
◦ Point estimation: use a single value as the estimate of the parameter
◦ Confidence interval: point out a range which covers the parameter

with high probability

An example: If we want to estimate the acceptance rate of Columbia
next year...
◦ Mike: It might be 7%. −→ a point estimation
◦ Lee: It could be between 6% and 8%. −→ a confidence interval
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This week's goal

◦ Understand two methods of point estimation and know how to calculate
them (Today)

⊲ Method of moments
⊲ Maximum likelihood estimation (MLE)

◦ Understand confidence intervals and know how to construct them
(Tuesday and Wednesday)
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Some Concepts
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Some concepts

◦ Category of "models":
⊲ Parametric: the form of population distribution (i.e. which

distribution the sample follows) is known (but the true parameter
is still unknown)

⊲ Nonparametric: the form of population distribution is unknown
◦ In this course, we focus on parametric models.

(1) Assume (Or have already known) the distribution of data
(2) Estimate the parameters of interest based on (1)
(3) Check the assumption you make in (1)
(4) Conclude.
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Some concepts
(Sample) Statistic: A function of sample X1, . . . , Xn, which is calculable
given the samples.It does NOT depend on unknown parameters.
Estimator: A statistic used to estimate the parameter.
Estimate: A numerical value of the estimator based on current sample.
Remark: Estimator is a random variable! (Why?)

An "old" example: The grades of final exams of this course last summer:

99, 70, 74, 55, 60, 60, 80, 88, 85, 92, 98, 100, 86, 85, 74, 90, 72, 92, 88,
87, 81, 100, 79, 90, 68, 89, 91, 90, 96, 85

We can have many different estimators for the true mean score θ:
◦ θ̂1 = X̄ (note that this is a r.v.), estimate = x̄ = 83.47

◦ θ̂2 = sample median (note that this is a r.v.), estimate = x̄ = 86.5

◦ θ̂3 =
1
2

!
min
1≤i≤n

Xi + max
1≤i≤n

Xi

"
(note that this is a r.v.), estimate = 77.5

◦ θ̂4 = X̄ + 10 (note that this is a r.v.), estimate = x̄ = 93.47

Question: How to evaluate them? Which ones are better?
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Bias and unbiased estimator

Suppose we are interested in a population parameter θ and considering
estimator θ̂.
Estimation bias: Eθ̂ − θ
Unbiased estimator: The estimator θ̂ that satisfies Eθ̂ = θ

Examples of unbiased estimator:

◦ X1, . . . , Xn
i.i.d.∼ X. Then θ̂ = X̄ is an unbiased estimator of θ = EX

⊲ X1, . . . , Xn
i.i.d.∼ Bernoulli(p). p̂ = X̄ is an unbiased estimator of p.

⊲ X1, . . . , Xn
i.i.d.∼ N(µ,σ2). µ̂ = X̄ is an unbiased estimator of µ.

◦ X1, . . . , Xn
i.i.d.∼ X. Then s2 = 1

n−1

#n
i=1(Xi − X̄)2 is an unbiased

estimator of Var(X). (You will prove this in HW4!)
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Method of Moments
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Method of moments

Definition: Let X1, . . . , Xn be an independent random sample from a pmf
or a pdf f(x). For k = 1, 2, 3, . . ., the k-th population moment is
E(Xk). The k-th sample moment is 1

n

#n
i=1X

k
i .

◦ Sample mean X̄ is the first sample moment and EX is the first
population moment.

◦ In many cases, sample moments are good estimators for population
moments (by Weak Law of Large Number!)

Example: Suppose X1, . . . , Xn are from the following pmf:

P(X = 1) = a, P(X = 2) = b, P(X = 4) = 1/4, P(X ∕= 1, 2, 4) = 0.

Construct estimators of parameters a and b.

First by definition of pmf: sum of probabilities = a+ b+ 1/4 = 1
And EX = a+ 2b+ 1.
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Method of moments
Example: Suppose X1, . . . , Xn are from the following pmf:

P(X = 1) = a, P(X = 2) = b, P(X = 4) = 1/4, P(X ∕= 1, 2, 4) = 0.

Construct estimators of parameters a and b.

First by definition of pmf: sum of probabilities = a+ b+ 1/4 = 1
And EX = a+ 2b+ 1.

Population-level equations
$
a+ b = 3

4 ,

a+ 2b+ 1 = EX

Sample-level equations
$
a+ b = 3

4 ,

a+ 2b+ 1 = X̄

Finally, motivated by the equation system on RHS, we can use the
following estimators

â =
5

2
− X̄, b̂ = X̄ − 7

4
.
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A general statement of method of moments
Suppose X1, . . . , Xn are from some pmf or pdf. θ1, . . . , θm are unknown
parameters. We want to construct estimators of θ1, . . . , θm.
Method of moments:
(1) Calculate m population moments and express them as functions of

θ1, . . . , θm (e.g.: f1, . . . , fm below)%
&&&&'

&&&&(

EX = f1(θ1, . . . , θm),

E(X2) = f2(θ1, . . . , θm),

· · ·
E(Xm) = fm(θ1, . . . , θm).

(2) Replace the population moments by sample moments:%
&&&&'

&&&&(

1
n

#n
i=1Xi = f1(θ1, . . . , θm),

1
n

#n
i=1X

2
i = f2(θ1, . . . , θm),

· · ·
1
n

#n
i=1X

m
i = fm(θ1, . . . , θm).

(3) Solve the m equations (w.r.t. θ1, . . . , θm) to get the moment
estimators θ̂1, . . . , θ̂m
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More examples

X1, . . . , Xn
i.i.d.∼ Exp(λ). Find an estimator of λ.

EX = 1/λ ⇒ X̄ = 1/λ̂

⇒ λ̂ = 1/X̄

Actually we can also use the second moment:

EX2 = Var(X) + (EX)2 = 2/λ2 ⇒ 1

n

n)

i=1

X2
i = 2/λ̂2

⇒ λ̂ =

*
2n#n
i=1X

2
i

They are both moment estimators!
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Maximum Likelihood Estimation
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Review: Independence between random variables

Suppose the joint pmf or pdf of X1, . . . , Xn is f(x1, . . . , xn). And the
marginal pmf or pdf of Xi is fi(xi). Then X1, . . . , Xn are independent if
and only if

f(x1, . . . , xn) =

n+

i=1

fi(xi),

for any numbers x1, . . . , xn.
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An example

10 individuals with Columbia email accounts are selected, and the first,
third, and tenth individuals are using a "strong" password, whereas the
others do not. If the probability that each person uses a strong password is
Bernoulli(p). Estimate p.

Method 1: Method of moments. Define

Xi =

$
1, i-th individual uses a strong password,
0, otherwise

Then Xi ∼ Bernoulli(p). Thus, EXi = p ⇒ p̂ = X̄.
The estimate x̄ = 3/10.
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An example
10 individuals with Columbia email accounts are selected, and the first,
third, and tenth individuals are using a "strong" password, whereas the
others do not. If the probability that each person uses a strong password is
Bernoulli(p). Estimate p.

Method 2: Joint pmf P(X1 = X3 = X10 = 1, others = 0) = p3(1− p)7.

◦ This joint pmf represents the
possibility of observing the current
samples under a specific value of p

◦ We call the joint pmf value under
current observations a likelihood
function, which is a function of
parameter p.

◦ Is the likelihood the larger the
better? Why?
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Maximum likelihood estimation

X1, . . . , Xn have a joint pmf or pdf f(x1, . . . , xn; θ), where θ is an
unknown parameter. Suppose x1, . . . , xn are the observed sample values.
◦ Then f(x1, . . . , xn; θ) can be seen as a function of θ, which is called the

likelihood function.
◦ The maximum likelihood estimate (MLE) is the value of θ that

maximize f(x1, . . . , xn; θ). In general, the maximum likelihood
estimator (MLE) is the value of θ that maximize f(X1, . . . , Xn; θ).

◦ Equivalently, we can find the MLEs by finding the maximizer of
log-likelihood ℓ(θ) = log f(X1, . . . , Xn; θ).1

◦ Ways to solve MLEs:
⊲ Finite θ choices: try all possible values or by graph of ℓ(θ)
⊲ A range of θ: take the derivative of ℓ(θ) and set it to be 0

i.e. solve the equation dℓ(θ)
dθ = 0.

1Can you tell why log-likelihood makes things easier compared to the likelihood?
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The previous example
Log-likelihood

ℓ(p) = log[P(X1 = X3 = X10 = 1, others = 0)]

= log(p3(1− p)7)

= 3 log p+ 7 log(1− p).

Set ℓ′(p̂) = 3
p̂ − 7

1−p̂ = 0 ⇒ p̂MLE = 0.3
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More examples

Example: X1, . . . , Xn
i.i.d.∼ Exp(λ). Find the MLE of λ.

The likelihood function equals the joint pdf

f(X1, . . . , Xn;λ) =

n+

i=1

(λe−λXi) (by independence)

= λn exp
,
− λ

n)

i=1

Xi

-
.

Log-likelihood ℓ(λ) = n logλ− λ
#n

i=1Xi. Let ℓ′(λ̂) = n
λ̂
−

#n
i=1Xi = 0,

we get λ̂ = n!n
i=1 Xi

= 1/X̄.

◦ Here the MLE is the same as the method of moments estimator (by 1st
moment)

◦ But the MLE is NOT always equal to the method of moments estimator
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More examples

Example: X1, . . . , Xn
i.i.d.∼ N(µ, 1). Find the maximum likelihood

estimator of µ.

The likelihood function equals the joint pdf

f(X1, . . . , Xn;µ) =

n+

i=1

1√
2π

exp
,
− 1

2
(Xi − µ)2

-
(by independence)

= (2π)−n/2 exp
,
− 1

2

n)

i=1

(Xi − µ)2
-
.

Log-likelihood ℓ(µ) = −n
2 log(2π)− 1

2

#n
i=1(Xi − µ)2.Let

ℓ′(µ̂) = −
#n

i=1(µ−Xi) = 0, we get µ̂ = 1
n

#n
i=1Xi = X̄.
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Reading list (optional)

◦ "Probability and Statistics for Engineering and the Sciences" (9th
edition):

⊲ Chapter 6.1 (only read the part before "Estimators with Minimum
Variance")

⊲ Chapter 6.2 (skip the part "Large Sample Behavior of the MLE")
◦ "OpenIntro statistics" (4th edition, free online, download [here]):

⊲ Chapter 5.1

https://leanpub.com/os
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