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Recap: Some concepts

◦ Goal of statistics: To make inferences on parameters of a
population, which are assumed to be fixed but unknown.
Examples: population proportion, mean, standard deviation, median etc.

◦ Statistic: A function of samples X1, . . . , Xn, which is calculable given
the samples. It does NOT depend on unknown parameters.

◦ Estimator: A statistic used to estimate the parameter.
◦ Estimate: A numerical value of the estimator.
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Two types of estimation
Two types of estimation:
◦ Point estimation: use a single value as the estimate of the parameter
◦ Confidence interval: point out a range (interval) which is very likely

to cover the parameter

An example: If we want to estimate the acceptance rate of Columbia
next year...
◦ Mike: It might be 7%. −→ a point estimation
◦ Lee: It could be between 6% and 8%. −→ a confidence interval
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Today's goal

◦ Understand confidence intervals and know how to construct them
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Confidence Interval Intuitions
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A previous example

10 individuals with Columbia email accounts are selected, and the first,
third, and tenth individuals are using a strong password, whereas the
others do not. If for each randomly sampled person, the probability that
they use a strong password is p. Estimate p.

Xi = 1(i-th individual uses a strong password), and p̂MLE = p̂Moment = X̄.
It's good...but for different samples, we have different X̄ since it's a
random variable. Is it possible to have X̄ = p every time?

Not at all. Actually the probability would be ZERO if
p ∕= 0, 1

n ,
2
n , . . . ,

n−1
n , 1 (why?)
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Point estimation is good, but...

Point estimation:
◦ It's a procedure that only needs the input of samples, and it will output

a single value as the estimate of the parameter.
◦ Provides no information about the precision and reliability of estimation,

although sometimes we know it will be close to the parameter value
when n is very large (e.g.: X̄ is close to θ = EX by Law of Large
Number!)

Now we want to find another procedure, which
◦ also only needs the input of samples
◦ outputs an interval as a range estimate of the parameter, which in a

long run can cover the true parameter value
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The first example: estimating µ in N(µ, 1)

Suppose we have samples X1, . . . , Xn
i.i.d.∼ N(µ, 1), where the mean

parameter µ is unknown. We want to estimate µ.

Consider the following procedure: We know
X̄ = 1

n

!n
i=1Xi ∼ N(µ, 1/n). Then by standardization,

X̄−µ√
1/n

∼ N(0, 1). Thus,

P
"
z0.975 ≤

X̄ − µ#
1/n

≤ z0.025

$
= 95%,

where zα is the (100(1− α))% quantile of N(0, 1), i.e.
Φ(zα) = 1− α. Then

P
"
X̄ − z0.025√

n
≤ µ ≤ X̄ − z0.975√

n

$
= 95%.

We get a random interval
%
X̄ − z0.025√

n
, X̄ + z0.025√

n

&
which can cover µ with

95% probability!
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How to understand this 95% coverage probability
P
"
X̄ − z0.025√

n
≤ µ ≤ X̄ +

z0.025√
n

$
= 95%.

We get a random interval
%
X̄ − z0.025√

n
, X̄ + z0.025√

n

&
which can cover µ with

95% probability!

*: The "realization" of the random interval that does NOT cover µ
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More intuitions

P
"
X̄ − z0.025√

n
≤ µ ≤ X̄ +

z0.025√
n

$
= 95%.

Recall that we want to find a new procedure, which
◦ also only needs the input of samples ✓

◦ outputs an interval as a range estimate of the parameter, which in a
long run can cover the true parameter value
✓: The random interval

%
X̄ − z0.025√

n
, X̄ + z0.025√

n

&
covers µ with 95%

probability!

Question: Is such random interval unique?
◦ What about

%
X̄ − z0.05√

n
, X̄

&
?

◦ What about
%
X̄ − z0.015√

n
, X̄ + z0.035√

n

&
?

◦ What about
%
X̄ − zα√

n
, X̄ + z0.05−α√

n

&
, where 0 ≤ α ≤ 0.025?



11/23

Confidence Interval Basics
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Confidence intervals
Definition: Suppose we have samples X1, . . . , Xn. If we can construct an
random interval [l(X1, . . . , Xn), u(X1, . . . , Xn)] which satisfies

P(l(X1, . . . , Xn) ≤ θ ≤ u(X1, . . . , Xn)) = 1− α,

then it can be called as a (100(1− α))% confidence interval (CI).
(100(1− α))% is the confidence level.

Example: Suppose we have samples X1, . . . , Xn
i.i.d.∼ N(µ, 1), where the

mean parameter µ is unknown. All of the followings are 95% CI of µ.
◦
%
X̄ − z0.05√

n
, X̄

&

◦
%
X̄ − z0.015√

n
, X̄ − z0.035√

n

&

◦
%
X̄ − z0.025√

n
, X̄ + z0.025√

n

&

Which one do you prefer?
People usually prefer "splitting the confidence level". It can also be proved
that under the setting of normal distribution, the width of the third CI
above is the shortest among all 95% CIs.
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Interpretations

Suppose we have samples X1, . . . , Xn
i.i.d.∼ N(µ, 1), where the mean

parameter µ is unknown. In our observations, x̄ = 5 and n = 10. We
want to estimate µ.

P
"
X̄ − z0.025√

n
≤ µ ≤ X̄ +

z0.025√
n

$
= 95%.

◦ Do NOT write it as P
"
5− 1.96√

10
≤ µ ≤ 5 + 1.96√

10

$
= 95%!

◦ Do NOT say "µ lies in
%
5− 1.96√

10
, 5 + 1.96√

10

&
with probability 95%"

◦ µ is a fixed and unknown number
◦ The correct statement: "If the experiment is performed over and over

again, in the long run the random interval
%
X̄ − 1.96√

10
, X̄ + 1.96√

10

&
will

cover µ with probability 95%"
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Interpretations

The correct statement: "If the experiment is performed over and over
again, in the long run the random interval

%
X̄ − 1.96√

10
, X̄ + 1.96√

10

&
will cover

µ with probability 95%"
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Confidence level, precision (width), and sample size

The ideal scenario:
◦ Large confidence level
◦ Small CI width
◦ Small sample size requirement
But this is an impossible trinity!

P
"
X̄ −

zα/2√
n

≤ µ ≤ X̄ +
zα/2√

n

$
= 1− α.

Confidence level = 100(1− α)%, CI width =
2zα/2√

n
, sample size n.

◦ Fixed confidence level: CI width ↘, n needs to be↗
◦ Fixed confidence level: n ↘, CI width ↗
◦ Fixed sample size n: CI width ↗, corresponding confidence level ↗
◦ Fixed sample size CI width: n ↗, corresponding confidence level ↗
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Confidence level, precision (width), and sample size

Example: Extensive monitoring of a computer time-sharing system has
suggested that response time to a particular editing command is normally
distributed with standard deviation 1 millisec. We wish to estimate the
true average response time µ. What sample size is necessary to ensure
that the resulting 95% CI has a width of (at most) 0.5?

Recall that the 95% CI is%
X̄ − z0.025√

n
, X̄ + z0.025√

n

&
=

%
X̄ − 1.96√

n
, X̄ + 1.96√

n

&
.The width = 2× 1.96√

n
.Thus

we need
2× 1.96√

n
≤ 0.5 ⇒ n ≥

"
2× 1.96

0.5

$2

= 61.4656.

Therefore, we need sample size n ≥ 62.
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Confidence intervals

Definition: Suppose we have samples X1, . . . , Xn. If we can construct an
random interval [l(X1, . . . , Xn), u(X1, . . . , Xn)] which satisfies

P(l(X1, . . . , Xn) ≤ θ ≤ u(X1, . . . , Xn)) = 1− α, (1)

then it can be called as a (100(1− α))% confidence interval (CI).
(100(1− α))% is the confidence level.

Steps to construct a CI: Suppose we have samples X1, . . . , Xn, and θ is
the unknown parameter.
◦ Step 1: Find a r.v. V which is a function of both X1, . . . , Xn and θ

◦ Step 2: Verify that the distribution of V does NOT depend on θ or any
other unknown parameters

◦ Step 3: Derive equation (1) from the fact that
P(v1−α/2 ≤ V (X1, . . . , Xn, θ) ≤ vα/2) = 1− α, where P(V ≥ vβ) = β
for any β ∈ [0, 1].
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Revisit the derivation of CI of µ in N(µ, 1)

Steps to construct a CI: Suppose we have samples X1, . . . , Xn, and θ is
the unknown parameter.
◦ Step 1: Find a r.v. V which is a function of both X1, . . . , Xn and θ
◦ Step 2: Verify that the distribution of V does NOT depend on θ or any

other unknown parameters
◦ Step 3: Derive equation (1) from the fact that
P(v1−α/2 ≤ V (X1, . . . , Xn, θ) ≤ vα/2) = 1− α, where P(V ≥ vβ) = β
for any β ∈ [0, 1].

Suppose X1, . . . , Xn
i.i.d.∼ N(µ, 1). X̄ = 1

n

!n
i=1Xi ∼ N(µ, 1/n). By

standardization, X̄−µ√
1/n

∼ N(0, 1). Thus,

P
"
z0.975 ≤

X̄ − µ#
1/n

≤ z0.025

$
= 95%,

Then
P
"
X̄ − z0.025√

n
≤ µ ≤ X̄ − z0.975√

n

$
= 95%.
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More Examples
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χ2-distribution (Chi-squared distribution)

Suppose Z1, . . . , Zp
i.i.d.∼ N(0, 1). Then we say variable V =

!p
i=1 Z

2
i

follows the χ2-distribution with degree of freedom p, denoted as
V ∼ χ2

p.
Property: EV = p, Var(V ) = 2p.

Applications:

◦ Suppose X1, . . . , Xn
i.i.d.∼ N(µ,σ2). The sample variance

s2 = 1
n−1

!n
i=1(Xi − X̄)2. Then (n−1)s2

σ2 ∼ χ2
n−1.

◦ Suppose X1, . . . , Xn
i.i.d.∼ Exp(λ). Then 2λ

!n
i=1Xi ∼ χ2

2n. (You will
use this result in HW4)

You may find Table A.7 in our textbook useful, which gives the table of
quantile values of χ2

p distribution with different p.
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CI of σ2 in N(µ, σ2)

Suppose X1, . . . , Xn
i.i.d.∼ N(µ,σ2). The sample variance

S2 = 1
n−1

!n
i=1(Xi − X̄)2.Then (n−1)S2

σ2 ∼ χ2
n−1.

Then
P
"
χ2
n−1,1−α/2 ≤

(n− 1)S2

σ2
≤ χ2

n−1,α/2

$
= 1− α,

which implies

P

'
(n− 1)S2

χ2
n−1,α/2

≤ σ2 ≤ (n− 1)S2

χ2
n−1,1−α/2

(
= 1− α.

So a 100(1− α)% CI of σ2 is
)
(n−1)S2

χ2
n−1,α/2

, (n−1)S2

χ2
n−1,1−α/2

*
.

Example: In one observation, we have n = 10 and s2 = 9.06, then the
95% CI of σ2 is

)
9×9.06
19.022 ,

9×9.06
2.7

*
= [4.29, 30.20].
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t-distribution (Student's t-distribution)
Suppose Z ∼ N(0, 1), Q ∼ χ2

p, and Z is independent with Q. Then we
say the variable Z√

Q/p
follows t-distribution with degree of freedom p,

denoted as Z√
Q/p

∼ tp.

Applications: Suppose X1, . . . , Xn
i.i.d.∼ N(µ,σ2). The sample variance

S2 = 1
n−1

!n
i=1(Xi − X̄)2. Then

√
n(X̄−µ)

S ∼ tn−1.

Proof: We need to use the fact (not trivial to prove!) that X̄ ⊥⊥ S.
◦ X̄ ∼ N(µ,σ2/n) ⇒

√
n(X̄−µ)

σ ∼ N(0, 1).
◦ On the other hand, (n−1)s2

σ2 ∼ χ2
n−1.

Finally, since
√
n(X̄−µ)

σ ⊥⊥ (n−1)s2

σ2 , we have
√
n(X̄ − µ)

σ

+(n− 1)s2

σ2
=

√
n(X̄ − µ)

S
∼ tn−1.
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