
1/36

Lecture 15: Hypothesis Testing (II)

Ye Tian

Department of Statistics, Columbia University
Calculus-based Introduction to Statistics (S1201)

August 3, 2022



2/36

Recap: Hypothesis testing

Statistical hypothesis: A claim or assertion either about the value of a
parameter of population.
E.g.: the lifetime of the light bulb > 500 hrs, population mean height of
men is equal to 70 inches etc..
Two hypotheses: Usually people decide between two claims. The null
hypothesis, denoted by H0, is the claim that is initially assumed to be
true. The alternative hypothesis, denoted by Ha or H1, is the assertion
that is contradictory to H0.
◦ Usually if we want to claim some new findings, we put them as Ha

◦ H0 and Ha are NOT symmetric --- we tend to "protect" H0, and
require very strong evidence to claim Ha is true

A test (of hypotheses) is a method for using sample data to decide
whether the null hypothesis should be rejected. It is a function of sample
data, whose value indicates the result of hypothesis testing.
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Recap: Type-I and Type-II errors
There are two competing hypotheses: the null and the alternative. In a
hypothesis test, we make a decision about which might be true, but our
choice might be incorrect.

◦ A Type 1 Error is rejecting the null hypothesis when H0 is true.
◦ A Type 2 Error is failing to reject the null hypothesis when Ha is true.
◦ We never know if H0 or Ha is true, but we need to consider all

possibilities
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Recap: Type-I and Type-II error rates

We call probability P(Type-I error|H0 true) = P(reject H0|H0 true) as
Type-I error rate (of the test), and call P(Type-II error|H1 true) =
P(accept H0|H1 true) as Type-II error rate (of the test). And 1−
Type-II error rate is called the power (of the test).
◦ This definition can be problematic. We will discuss more on this.
◦ Recall that Type-I error is more serious

The ideal scenario: Both Type-I and Type-II errors are small.

But it's IMPOSSIBLE! (We will see this later)

Neyman-Pearson Criterion: We would like to construct a test that:
(1) controls Type-I error rates under some small level α
(2) under (1), minimizes the Type-II error

In this course, we will focus on the goal (1).
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Recap: General Procedure

(1) Construct the null and alternative hypotheses
(2) Given the level α, develop a test that satisfies Type-1 error rate
P(reject H0|H0 true) ≤ α

How to do step (2):
◦ Construct a test statistic T (X1, . . . , Xn), which is a function of

samples X1, . . . , Xn and whose distribution under H0 is known
◦ Find a random region B such that P(reject H0|H0 true) =
P(T (X1, . . . , Xn) ∈ B)=α (why "=" instead of ≤?)

◦ Then the rejection region is B, and the corresponding test is!
reject H0, if T (X1, . . . , Xn) ∈ B,

accept H0, if T (X1, . . . , Xn) /∈ B.
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Example: revisited
"A common belief among the lay public is that body weight increases after
entry into college, and the phrase 'freshman 15' has been coined to
describe the 15 pounds that students presumably gain over their freshman
year." Suppose everyone's weight is normally distributed.

Let µ denote the true average weight gain of students over the course of
their first year in college.

H0 : µ = 15 v.s. Ha : µ ∕= 15
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Example: revisited

H0 : µ = 15 v.s. Ha : µ ∕= 15

◦ Under H0, T =
√
n(X̄−15)

S ∼ tn−1-distribution would be the test
statistic.

◦ We want to find c such that Type-I error rate = P(|T | > c) = 5%
It suffices to let c = tn−1,0.025.
Therefore, we reject H0 if T > tn−1,0.025 or T < −tn−1,0.025. We call"
−∞,−tn−1,0.025

#
∪
"
tn−1,0.025,+∞

#
the rejection region.

◦ Its Type-I error rate = 5% (by construction of the test!).
◦ Given µ = µ0, Type-II error rate = P(accept H0|H1 true) =
P(|T | ≤ tn−1,0.025|H1 true) = P(|T | ≤ tn−1,0.025|µ = µ0).

◦ If the data collected satisfies x̄ = 20, s = 3, n = 21, then the realization
of T i.e. t =

√
n(x̄−15)

s = 3.06 > t20,0.025 = 2.086 ⇒ reject H0
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Example: revisited

H0 : µ = 15 v.s. Ha : µ ∕= 15

The rejection region:
"
−∞,−tn−1,0.025

#
∪
"
tn−1,0.025,+∞

#
.

◦ If the data collected satisfies x̄ = 20, s = 3, n = 21, then the realization
of T i.e. t =

√
n(x̄−15)

s = 3.06 > t20,0.025 = 2.086 ⇒ reject H0

◦ p-value is the probability of obtaining a value of the test statistic at
least as contradictory to H0 as the value calculated from the available
sample data, when assuming that the null hypothesis is true.

◦ T0 =
√
n(x̄−15)

3 =
√
21×(17−15)

3 = 3.06. Then p-value =
P(|T | > |T0||µ = 15) = P( T$%&'

∼t20

> 3.06) + P( T$%&'
∼t20

< −3.06)

= 2× 0.003 = 0.006
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Today's goal

◦ Understand two-sided and one-sided hypothesis testing procedure when
the samples are normally distributed

⊲ Test the mean (H0 : µ = µ0 for some constant µ0)
⋄ σ known ⇒ one-sample z-test
⋄ σ unknown ⇒ one-sample t-test

⊲ Test the variance/SD (H0 : σ = σ0 for some constant σ0) (You will
derive this in HW5)

◦ Know how to calculate Type-I, Type-II and p-value under the
aforementioned scenarios
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One-sample z-test
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Example: fire protection system
A manufacturer of sprinkler systems used for fire protection in office
buildings claims that the true average system-activation temperature is
130 ◦F. A sample of n = 9 systems, when tested, yields a sample average
activation temperature of 131.08 ◦F. If the distribution of activation
temperature is normal with standard deviation 1.5 ◦F, does the data
contradict the manufacturer's claim at significance level α = 0.05?

H0 : average activation temperature µ = 130 ◦F v.s. Ha : µ ∕= 130 ◦F
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Two-sided one-sample z-test: derivation
Suppose we have data X1, . . . , Xn

i.i.d.∼ N(µ,σ2) with σ2 known.
Our hypothesis testing problem is

H0 : µ = µ0 v.s. Ha : µ ∕= µ0,

for some constant µ0. We want to control Type-I error rate ≤ α.
Step 1: Under H0, X̄ ∼ N(µ0,σ

2/n) ⇒ Z =
√
n(X̄−µ0)

σ ∼ N(0, 1)
Step 2: The larger |Z| is, more likely Ha is true. Therefore the rejection
region would be in the form |Z| > c. Note that

P(|Z| > zα/2) = α.

Step 3: The rejection region is |Z| > zα/2. p-value = P(|Z| > |z|)
= P

(
|Z| >

))
√
n(x̄−µ0)

σ

))
*
= 1− 2Φ

(
−

))
√
n(x̄−µ0)

σ

))
*
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Two-sided one-sample z-test

Suppose we have data X1, . . . , Xn
i.i.d.∼ N(µ,σ2) with σ2 known.

Our hypothesis testing problem is
H0 : µ = µ0 v.s. Ha : µ ∕= µ0,

for some constant µ0. We want to control Type-I error rate ≤ α.

◦ Test statistic Z =
√
n(X̄−µ0)

σ ∼ N(0, 1)

◦ The test: reject H0 if |Z| > zα/2, otherwise accept H0. This is called
the two-sided one-sample z-test with level α.

◦ p-value = P(|Z| > |z|) = 2Φ
(
−
))
√
n(x̄−µ0)

σ

))
*

◦ When µ = µ1, X̄ ∼ N(µ1,σ
2/n).Type-II error rate

= P(−zα/2 ≤ Z =
√
n(X̄−µ0)

σ ≤ zα/2)

= P
"√n(µ0−µ1)

σ − zα/2 ≤
√
n(X̄−µ1)

σ ≤
√
n(µ0−µ1)

σ + zα/2
#

= Φ
(√

n(µ0−µ1)
σ + zα/2

*
− Φ

(√
n(µ0−µ1)

σ − zα/2

*
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Example: fire protection system
A manufacturer of sprinkler systems used for fire protection in office
buildings claims that the true average system-activation temperature is
130 ◦F. A sample of n = 9 systems, when tested, yields a sample average
activation temperature of 131.08 ◦F. If the distribution of activation
temperature is normal with standard deviation 1.5 ◦F, does the data
contradict the manufacturer's claim at significance level α = 0.05?

H0 : average activation temperature µ = 130 v.s. Ha : µ ∕= 130

◦ The test: reject H0 if |Z| > zα/2 = z0.025 = 1.96, otherwise accept H0

◦ Sample z-statistic we observed z =
√
9(131.08−130)

1.5 = 2.16 > 1.96 ⇒
reject H0, i.e. under 5% significance level, the data contradicts the
manufacturer's claim

◦ Test statistic Z =
√
n(X̄−µ0)

σ ∼ N(0, 1)

◦ p-value = P(|Z| > |z|) = P(|Z| > 2.16) = 2Φ(−2.16) = 0.0308
< 0.05 ⇒ reject H0
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Example: fire protection system
A manufacturer of sprinkler systems used for fire protection in office
buildings claims that the true average system-activation temperature is
130 ◦F. A sample of n = 9 systems, when tested, yields a sample average
activation temperature of 131.08 ◦F. If the distribution of activation times
is normal with standard deviation 1.5 ◦F, does the data contradict the
manufacturer's claim at significance level α = 0.05?

H0 : average activation temperature µ = 130 v.s. Ha : µ ∕= 130

◦ The test: reject H0 if |Z| > zα/2 = z0.025 = 1.96, otherwise accept H0

◦ When µ = 131 (Ha true), we'd make Type-II error if accept H0

(−1.96 ≤ Z ≤ 1.96).
Type-II error rate = P(−1.96 ≤ Z =

√
9(X̄−130)

1.5 ≤ 1.96)

= P
(
− 1.96−

√
9

1.5 ≤
√
9(X̄ − 131)

1.5$ %& '
∼N(0,1)

≤ 1.96−
√
9

1.5

*

= Φ(−0.04)− Φ(−3.96) ≈ 0.4840
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Example: fire protection system

A manufacturer of sprinkler systems used for fire protection in office
buildings claims that the true average system-activation temperature is
130 ◦F. A sample of n = 9 systems, when tested, yields a sample average
activation temperature of 131.08 ◦F. If the distribution of activation
temperature is normal with standard deviation 1.5 ◦F, does the data
contradict the manufacturer's claim at significance level α = 0.05?

H0 : average activation temperature µ = 130 v.s. Ha : µ ∕= 130

◦ The test: reject H0 if |Z| > zα/2 = z0.025 = 1.96, otherwise accept H0

◦ When µ = 131 (Ha true), Type-II error rate of the test = 0.4840.
◦ But based on current data, we DO NOT make a Type-II error! (because

we reject H0)
◦ Type-II error rate is the long-run probability that we make a Type-II

error if we do the test with independent data many times
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Example (revisited): fire protection system

A manufacturer of sprinkler systems used for fire protection in office
buildings claims that the true average system-activation temperature µ is
130 ◦F. A sample of n = 9 systems, when tested, yields a sample average
activation temperature of 131.08 ◦F. If the distribution of activation
temperature is normal with standard deviation 1.5 ◦F, does the data
suggest that µ > 130 at significance level α = 0.05?

H0 : average activation temperature µ = 130 ◦F v.s. Ha : µ > 130 ◦F
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One-sided one-sample z-test: derivation
Suppose we have data X1, . . . , Xn

i.i.d.∼ N(µ,σ2) with σ2 known.
Our hypothesis testing problem is

H0 : µ = µ0 v.s. Ha : µ > µ0,

for some constant µ0. We want to control Type-I error rate ≤ α.
Step 1: Under H0, X̄ ∼ N(µ0,σ

2/n) ⇒ Z =
√
n(X̄−µ0)

σ ∼ N(0, 1)
Step 2: The larger |Z| is, more likely Ha is true.Therefore the rejection
region would bein the form Z > c. Note that

P(Z > zα) = α.

Step 3: The rejection region is Z > zα. p-value = P(Z > z)

= P
(
Z >

√
n(x̄−µ0)

σ

*
= 1− Φ

(√
n(x̄−µ0)

σ

*
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One-sided one-sample z-test
Suppose we have data X1, . . . , Xn

i.i.d.∼ N(µ,σ2) with σ2 known.
Our hypothesis testing problem is

H0 : µ = µ0 v.s. Ha : µ > µ0,

for some constant µ0. We want to control Type-I error rate ≤ α.
◦ Test statistic Z =

√
n(X̄−µ0)

σ ∼ N(0, 1)
◦ The test: reject H0 if Z > zα, otherwise accept H0. This is called the

one-sided one-sample z-test with level α.
◦ p-value = P(Z > z) = 1− Φ

(√
n(x̄−µ0)

σ

*

◦ When µ = µ1, X̄ ∼ N(µ1,σ
2/n).Type-II error rate

= P(Z =
√
n(X̄−µ1)

σ ≤ zα) = P
"√n(X̄−µ1)

σ ≤
√
n(µ0−µ1)

σ + zα
#

= Φ
(√

n(µ0−µ1)
σ + zα

*
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Compare two-sided and one-sided z-tests
Two-sided z-test: Ha includes both directions (µ ∕= µ0)

One-sided z-test: Ha includes only one direction (µ > µ0 or µ < µ0)



21/36

p-value in two-sided and one-sided z-tests
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Example (revisited): fire protection system

A manufacturer of sprinkler systems used for fire protection in office
buildings claims that the true average system-activation temperature is
130 ◦F. A sample of n = 9 systems, when tested, yields a sample average
activation temperature of 131.08 ◦F. If the distribution of activation
temperature is normal with standard deviation 1.5 ◦F, does the data
suggest that µ > 130 at significance level α = 0.05?

H0 : average activation temperature µ = 130 v.s. Ha : µ > 130

◦ The test: reject H0 if Z > z0.05 = 1.645, otherwise accept H0

◦ Sample z-statistic we observed z = 2.16 > 1.645 ⇒ reject H0, i.e. under
5% significance level, the data contradicts the manufacturer's claim

◦ Test statistic Z =
√
n(X̄−µ0)

σ ∼ N(0, 1)

◦ p-value = P(Z > z) = P(Z > 2.16) = 1− Φ(2.16) = 0.0154 < 0.05 ⇒
reject H0
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Example (revisited): fire protection system
A manufacturer of sprinkler systems used for fire protection in office
buildings claims that the true average system-activation temperature is
130 ◦F. A sample of n = 9 systems, when tested, yields a sample average
activation temperature of 131.08 ◦F. If the distribution of activation
temperature is normal with standard deviation 1.5 ◦F, does the data
suggest that µ > 130 at significance level α = 0.05?

H0 : average activation temperature µ = 130 v.s. Ha : µ > 130

◦ The test: reject H0 if Z > z0.05 = 1.645, otherwise accept H0

◦ When µ = 131 (Ha true), we'd make Type-II error if accept H0

(Z ≤ 1.645).
Type-II error rate = P

(
Z =

√
9(X̄−130)

1.5 ≤ 1.645
*

= P
(√9(X̄ − 131)

1.5$ %& '
∼N(0,1)

≤ 1.645−
√
9

1.5

*

= Φ(−0.36) ≈ 0.3594
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One-sample t-test
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Example (again): fire protection system
A manufacturer of sprinkler systems used for fire protection in office
buildings claims that the true average system-activation temperature is
130 ◦F. A sample of n = 9 systems, when tested, yields a sample average
activation temperature of 131.08 ◦F and sample standard deviation 1.21
◦F. If the distribution of activation temperature is normal, does the data
contradict the manufacturer's claim at significance level α = 0.05?

H0 : average activation temperature µ = 130 ◦F v.s. Ha : µ ∕= 130 ◦F
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Two-sided one-sample t-test: derivation
Suppose we have data X1, . . . , Xn

i.i.d.∼ N(µ,σ2) with σ2 unknown.
Our hypothesis testing problem is

H0 : µ = µ0 v.s. Ha : µ ∕= µ0,

for some constant µ0. We want to control Type-I error rate ≤ α.
Step 1: Under H0, T =

√
n(X̄−µ0)

S ∼ tn−1

Step 2: The larger |T | is, more likely Ha is true. Therefore the rejection
region would be in the form |T | > c. Note that

P(|S| > tn−1,α/2) = α.

Step 3: The rejection region is |T | > tn−1,α/2, i.e. X̄ < µ0 − S√
n
tn−1,α/2

or X̄ > µ0 +
S√
n
tn−1,α/2. p-value = P(|T | > |t|) = P

(
|T | >

))
√
n(x̄−µ0)

s

))
*

= 2F
(
−

))
√
n(x̄−µ0)

s

))
*

, where F is the cdf of tn−1-distribution
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Two-sided one-sample t-test
Suppose we have data X1, . . . , Xn

i.i.d.∼ N(µ,σ2) with σ2 unknown.
Our hypothesis testing problem is

H0 : µ = µ0 v.s. Ha : µ ∕= µ0,

for some constant µ0. We want to control Type-I error rate ≤ α.
◦ Test statistic T =

√
n(X̄−µ0)

S ∼ tn−1

◦ The test: reject H0 if T < −tn−1,α/2 or T > tn−1,α/2, otherwise accept
H0. This is called the two-sided one-sample z-test with level α.

◦ p-value = P(|T | > |t|) = 2F
(
−

))
√
n(x̄−µ0)

s

))
*

, F : cdf of
tn−1-distribution

◦ Type-II error rate is a bit harder to calculate in this case so we won't
discuss it
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Example: fire protection system
A manufacturer of sprinkler systems used for fire protection in office
buildings claims that the true average system-activation temperature is
130 ◦F. A sample of n = 9 systems, when tested, yields a sample average
activation temperature of 131.08 ◦F and sample standard deviation 1.21
◦F. If the distribution of activation temperature is normal, does the data
contradict the manufacturer's claim at significance level α = 0.05?

H0 : average activation temperature µ = 130 v.s. Ha : µ ∕= 130

◦ The test: reject H0 if |T | > t8,0.025 = 2.306, otherwise accept H0

◦ Sample test statistic we observed t =
√
n(x̄−130)

s = 3×(131.08−130)
1.21

= 2.678 > 2.306 ⇒ reject H0, i.e. under 5% significance level, the data
contradicts the manufacturer's claim

◦ Test statistic T =
√
n(X̄−µ0)

S ∼ tn−1 = t8

◦ p-value = P(|T | > |t|) = P(|T | > 2.678) = 2F (−2.678) = 0.028
< 0.05 ⇒ reject H0
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Example (again): fire protection system

A manufacturer of sprinkler systems used for fire protection in office
buildings claims that the true average system-activation temperature µ is
130 ◦F. A sample of n = 9 systems, when tested, yields a sample average
activation temperature of 131.08 ◦F and sample standard deviation 1.21
◦F. If the distribution of activation temperature is normal, does the data
suggest that µ > 130 at significance level α = 0.05?

H0 : average activation temperature µ = 130 ◦F v.s. Ha : µ > 130 ◦F
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One-sided one-sample t-test: derivation
Suppose we have data X1, . . . , Xn

i.i.d.∼ N(µ,σ2) with σ2 unknown.
Our hypothesis testing problem is

H0 : µ = µ0 v.s. Ha : µ > µ0,

for some constant µ0. We want to control Type-I error rate ≤ α.
Step 1: Under H0, T =

√
n(X̄−µ0)

S ∼ tn−1

Step 2: The larger T is, more likely Ha is true. Therefore the rejection
region would be in the form T > c. Note that

P(|S| > tn−1,α/2) = α.

Step 3: The rejection region is T > tn−1,α, i.e. X̄ > µ0 +
S√
n
tn−1,α.

p-value = P(T > t) = P
(
T >

√
n(x̄−µ0)

s

*
= 1− F

(√
n(x̄−µ0)

s

*
, where F is

the cdf of tn−1-distribution
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One-sided one-sample t-test
Suppose we have data X1, . . . , Xn

i.i.d.∼ N(µ,σ2) with σ2 unknown.
Our hypothesis testing problem is

H0 : µ = µ0 v.s. Ha : µ > µ0,

for some constant µ0. We want to control Type-I error rate ≤ α.
◦ Test statistic T =

√
n(X̄−µ0)

S ∼ tn−1

◦ The test: reject H0 if T > tn−1,α, otherwise accept H0. This is called
the one-sided one-sample z-test with level α.

◦ p-value = P(T > t) = 1− F
(√

n(x̄−µ0)
s

*
, F : cdf of tn−1-distribution

◦ Type-II error rate is a bit harder to calculate in this case so we won't
discuss it
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Compare two-sided and one-sided t-tests
Two-sided t-test: Ha includes both directions (µ ∕= µ0)

One-sided t-test: Ha includes only one direction (µ > µ0 or µ < µ0)
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p-value in two-sided and one-sided t-tests
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Example (finally!): fire protection system
A manufacturer of sprinkler systems used for fire protection in office
buildings claims that the true average system-activation temperature is
130 ◦F. A sample of n = 9 systems, when tested, yields a sample average
activation temperature of 131.08 ◦F and sample standard deviation 1.21
◦F. If the distribution of activation temperature is normal, does the data
suggest that µ > 130 at significance level α = 0.05?

H0 : average activation temperature µ = 130 v.s. Ha : µ > 130

◦ The test: reject H0 if T > t8,0.05 = 1.860, otherwise accept H0

◦ Sample test statistic we observed t =
√
n(x̄−130)

s = 3×(131.08−130)
1.21

= 2.678 > 1.860 ⇒ reject H0, i.e. under 5% significance level, the data
contradicts the manufacturer's claim

◦ Test statistic T =
√
n(X̄−µ0)

S ∼ tn−1 = t8

◦ p-value = P(T > t) = P(T > 2.678) = 1− F (2.678) = 0.014 < 0.05 ⇒
reject H0
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More about p-values

◦ p-value is a probability
◦ We reject the null when p-value < significance level α, and accept the

null when p-value ≥ significance level α. This is equivalent to the test
we came up with before by calculating the rejection region.

◦ For one-sided test like H0 : µ = µ0 v.s. Ha : µ>µ0, the p-value
usually looks like P(T > t), where T is the test statistic and T0 is the
current value of T calculated from the available sample

◦ For one-sided test like H0 : µ = µ0 v.s. Ha : µ<µ0, the p-value
usually looks like P(T < t)

◦ For two-sided test like H0 : µ = µ0 v.s. Ha : µ ∕=15, the p-value
usually looks like P(|T | > |t|)

◦ The smaller p-value we have, more evidence we have against H0

◦ p-value is NOT the probability that H0 is true!!! (H0 can only be true
or false, so it's deterministic, although we don't know.)
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