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Lecture 6: Independence and Probability Calculation
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Recap: conditional probability

Definition: Conditional probability of A given B is defined as
P(A|B) =

P(A ∩B)

P(B)
.

Multiplication rule:
◦ P(A ∩B) = P(A)P(B|A)
◦ P(A ∩B ∩ C) = P(A)P(B|A)P(C|A ∩B)

Rule of total probability: If Ω = A1 ∪A2 ∪ · · · ∪Ak and A1, . . . , Ak are
mutually exclusive (such A1, . . . , Ak are called a partition of the sample
space), then for any event B,

P(B) = P(A1)P(B|A1) + P(A2)P(B|A2) + . . .+ P(Ak)P(B|Ak)
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Recap: Bayes' Theorem
Bayes' Theorem: If A1, . . . , Ak are a partition of sample space Ω, then
for any event B,

P(Aj |B) =
P(Aj ∩B)

P(B)
=

P(B|Aj)P(Aj)!k
i=1 P(B|Ai)P(Ai)

, j = 1, . . . , k.

Tree diagram:
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Last lecture: Monty Hall problem
You're given the choice of three doors: Behind one door is an iPhone 13;
behind the others, goats.
You randomly pick a door, say No.1, and the host, who knows what's
behind the doors, opens another door, say No.3, which has a goat. He
then says to you, "Do you want to pick door No.2?"

Question: Would you switch your choice?

Underlying assumptions:
◦ If the iPhone is behind the door we pick, then the host randomly picks

one door from the remaining two to open.
◦ Otherwise, the host opens the door of goat.



5/33

Last lecture: Monty Hall problem

Solution (by Bayes Theorem):
◦ P(iPhone is behind door i) = 1/3, i = 1, 2, 3

Then

P(win iPhone by staying with #1)
= P(iPhone behind #1|host opens #3 and see a goat)

=
P(host opens #3 and see a goat|iPhone behind #1)P(iPhone behind #1)

!3
i=1 P(host opens #3 and see a goat|iPhone behind #i)P(iPhone behind #i)

=
1
2 × 1

3
1
2 × 1

3 + 1× 1
3 + 0× 1

3

=
1

3
.
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Last lecture: Monty Hall problem

Solution (by Bayes Theorem):
◦ P(iPhone is behind door i) = 1/3, i = 1, 2, 3

Then

P(win iPhone after switching to #2)
= P(iPhone behind #2|host opens #3 and see a goat)

=
P(host opens #3 and see a goat|iPhone behind #2)P(iPhone behind #2)

!3
i=1 P(host opens #3 and see a goat|iPhone behind #i)P(iPhone behind #i)

=
1× 1

3
1
2 × 1

3 + 1× 1
3 + 0× 1

3

=
2

3
>

1

3
=⇒ We should switch!
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Last lecture: Monty Hall problem (modified)

You randomly pick a door, say No.1, and the host, who doesn't know
what's behind the doors, randomly opens another door among the
remaining two, say No.3, which has a goat. He then says to you, "Do you
want to pick door No.2?"

Question: Would you switch your choice?

Underlying assumptions:
◦ No matter which one you originally pick, the host always randomly

picks one door from the remaining two to open.
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Last lecture: Monty Hall problem (modified)

Solution (by Bayes Theorem):
◦ P(iPhone is behind door i) = 1/3, i = 1, 2, 3

Then

P(win iPhone by staying with #1)
= P(iPhone behind #1|host opens #3 and see a goat)

=
P(host opens #3 and see a goat|iPhone behind #1)P(iPhone behind #1)

!3
i=1 P(host opens #3 and see a goat|iPhone behind #i)P(iPhone behind #i)

=
1
2 × 1

3
1
2 × 1

3 + 1
2 × 1

3 + 0× 1
3

=
1

2
.
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Last lecture: Monty Hall problem (modified)

Solution (by Bayes Theorem):
◦ P(iPhone is behind door i) = 1/3, i = 1, 2, 3

Then

P(win iPhone after switching to #2)
= P(iPhone behind #2 and see a goat|host opens #3)

=
P(host opens #3 and see a goat|iPhone behind #2)P(iPhone behind #2)

!3
i=1 P(host opens #3 and see a goat|iPhone behind #i)P(iPhone behind #i)

=
1
2 × 1

3
1
2 × 1

3 + 1
2 × 1

3 + 0× 1
3

=
1

2
=⇒ It doesn't matter!!
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Reflection on Monty Hall problem

◦ Why is the answer so different?
◦ A more intuitive explanation of the original Monty Hall problem:

The host always helps us kick out a wrong choice in the remaining two!
◦ But in the modified version, the host selects the door randomly, which

doesn't benefit switching.



11/33

Today's goal

◦ Understand the definition of independence of events
◦ Know how to decide whether events are independent or not
◦ Comprehensively use all properties of probability we mentioned before to

calculate relative problems
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Independence
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Intuition
In previous examples, often P(A|B) ∕= P(A), which means the information
"B has occurred" resulted in a change in the likelihood of A occurring.

But sometimes, P(A|B) = P(A), which means the chance that A will
occur or has occurred is not affected by knowledge that B has occurred.

Example: A box contains 4 red tickets and 6 white tickets. Pick a ticket
at random from the box.

◦ What is the chance of getting a winning ticket?(5/10)
◦ If you see that it is a white one, what is the chance of getting a winning

ticket?(3/6)
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Independence between two events

Definition: Two events A and B are independent if P(A|B) = P(A),
denoted as A ⊥⊥ B. They are dependent otherwise, denoted as A ∕⊥⊥ B.

Question: What can we say about ∅ and Ω?

Equivalent definitions for A ⊥⊥ B:
◦ P(B|A) = P(B)

◦ P(A ∩B) = P(A)P(B) (very useful!)

Properties: A and B are independent iff (if and only if) any of the
following holds:
◦ A and Bc are independent
◦ Ac and B are independent
◦ Ac and Bc are independent

You will prove these in HW2!
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Example
Consider a gas station with six pumps numbered 1, 2,..., 6. Suppose that

P({1}) = P({6}) = 0.1, P({2}) = P({5}) = 0.15, P({3}) = P({4}) = 0.25.

Define events A = {2, 4, 6}, B = {1, 2, 3}, C = {2, 3, 4, 5}.

Therefore:
◦ P(A) = 0.5, P(B) = 0.5, P(C) = 0.8.
◦ P(A ∩B) = P({2}) = 0.15

◦ P(B ∩ C) = P({2, 3}) = 0.4

◦ P(A ∩ C) = P({2, 4}) = 0.4

Hence:
◦ P(A ∩B) ∕= P(A)P(B) =⇒ A ∕⊥⊥ B

◦ P(B ∩ C) = P(B)P(C) =⇒ B ⊥⊥ C

◦ P(A ∩ C) = P(A)P(C) =⇒ A ⊥⊥ C
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Independence between multiple events

Definition: Events A1, . . . , An are (mutually) independent if for every
k = 2, 3, . . . , n and every subset of indices i1, i2, . . . , ik,

P(Ai1 ∩Ai2 ∩ . . . ∩Aik) = P(Ai1)P(Ai2) · · ·P(Aik).

◦ When n = 2: it reduces to P(A1 ∩A2) = P(A1)P(A2)

◦ When n = 3: it reduces to (all the following conditions have to hold at
the same time):

⊲ P(A1 ∩A2) = P(A1)P(A2)
⊲ P(A2 ∩A3) = P(A2)P(A3)
⊲ P(A1 ∩A3) = P(A1)P(A3)
⊲ P(A1 ∩A2 ∩A3) = P(A1)P(A2)P(A3)

Therefore, independence is often an idealistic assumption in practice!
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Independence between multiple events

Theorem: If A1, . . . , An are mutually independent, then for any index sets
{i1, . . . , ik} and {j1, . . . , jr} where {i1, . . . , ik} ∩ {j1, . . . , jr} = ∅,

intersections/unions between Ai1 , . . . , Aik ⊥⊥
intersections/unions between Aj1 , . . . , Ajr ..

The events Ai1 , . . . , Aik and Aj1 , . . . , Ajr can be replaced by their
complements.

For example:
◦ (A1 ∪A2) ⊥⊥ (A3 ∩A4)

◦ (A1 ∩Ac
2 ∪A5) ⊥⊥ (A3 ∪A4)

◦ A2 ⊥⊥ (Ac
1 ∩A4 ∩A3)

◦ ...
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Example: parallel system

A system consists of 5 independent components C1, …, C5.
P(Ci works properly) = 0.9, i = 1, . . . , 5. The chance that the system will
work properly =?

{The whole system works} = (C1 ∪ C2) ∩ (C3 ∪ C4 ∪ C5)

P(The whole system works) = P((C1 ∪ C2) ∩ (C3 ∪ C4 ∪ C5))

= P(C1 ∪ C2)× P(C3 ∪ C4 ∪ C5).

◦ P(C1 ∪ C2) = 1− P(Cc
1 ∩ Cc

2) = 1− P(Cc
1)P(Cc

2) = 0.99;
◦ P(C3 ∪ C4 ∪ C5) = 1− P(Cc

3)P(Cc
4)P(Cc

5) = 1− 0.13 = 0.999

=⇒ P(The whole system works) = 0.99× 0.999 = 0.989
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Example: parallel system 2
A system consists of 3 independent components C1, C2, C3.
P(Ci works properly) = 0.7, i = 1, . . . , 3. The chance that the system will
work properly =?

{The whole system works} = (C1 ∩ C2) ∪ C3

P(The whole system works) = P((C1 ∩ C2) ∪ C3)

= P(C1 ∩ C2) + P(C3)− P(C1 ∩ C2 ∩ C3)

= P(C1)P(C2) + P(C3)− P(C1)P(C2)P(C3)

= 0.72 + 0.7− 0.73

= 0.847



20/33

Example: coffee purchase

The accompanying table gives information on the type of coffee selected
by someone purchasing a single cup.

Consider randomly selecting such a coffee purchaser.
◦ Is "buying decaf coffee" independent with "buying medium-size coffee"?
◦ Are "buying regular coffee", "buying small-size coffee" and "buying

medium-size coffee" mutually independent?

P(decaf ∩ medium) = 10% ∕= 40% × 30% = P(decaf)× P(medium)
⇒ decaf ∕⊥⊥ medium
Can we claim that {regular}, {small} and {medium} are NOT mutually
independent?
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Review: Probability Calculation
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Review: Probability Calculation

P(·) : A ∈ a set of all events → a number P(A) (a mapping/function
which maps an event to a number)

Three axioms:
◦ 0 ≤ P(A) ≤ 1 for any event A ⊆ Ω

◦ P(Ω) = 1, P(∅) = 0

◦ If A1, A2, A3, …, An is a collection of disjoint (mutually exclusive)
events, then

P(A1 ∪A2 ∪ . . . ∪An) =

n"

i=1

P(Ai).

Theorem: In an experiment consisting of N outcomes with equal
probability, for any event A,

P(A) =
N(A)

N
,

where we use counting techniques to calculate N(A) and N .
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Review: Probability Calculation

General idea to calculate probability:
(1) Translate the conditions and the event of interest by probability
language
(2) Calculate.

⊲ For equally likely outcomes, consider P(A) = N(A)
N combined with

counting techniques
⊲ If conditioning probability is easier to calculate or it is given,

consider conditional multiplication rule, rule of total probability,
and Bayes' Theorem

⊲ See whether there are independence or not, which may help us to
do the calculation
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Example 1
Given A and B, such that P(A) = P(Ac ∩B) = 0.4 and P(A ∩B) = 0.1.
◦ Find P(A ∪B)

◦ Are A and B independent?

◦ Venn diagram:

Or:
⊲ P(B) = P(Ac ∩B) + P(A ∩B) = 0.4 + 0.1 = 0.5
⊲ Then P(A ∪B) = P(A) + P(B)− P(A ∩B)

= 0.4 + 0.5− 0.1 = 0.8

◦ No,because P(A ∩B) = 0.1 ∕= 0.4× 0.5 = P(A)× P(B).
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Example 2

5 faculty members (3 pro-A and 2 pro-B) vote for the department chair
from candidate A and B one by one in a random order.

The probability that "A remains ahead of B throughout the vote count" =
? (e.g., "AABAB" is OK, but not "ABBAA")

Some observations:
◦ Permutation problem
◦ The last one has to vote for B. (Why?)
◦ The first one must vote for A. (Why?)
◦ So it has to be "ABAAB", "AABAB" or "AAABB"

N(Ω) = P5,5 = 5! = 120
N(A remains ahead of B) = 3× P3,3 × P2,2 = 36

P(A remains ahead of B) = N(A remains ahead of B)
N(Ω) = 0.3
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Example 3
Randomly select a student at Columbia:
◦ A = {the selected student has a American Express card}
B = {the selected student has a Barclays card}
C = {the selected student has a Chase card}

◦ P(A) = 0.6,P(B) = 0.4,P(C) = 0.2.
P(A ∩B) = 0.3,P(A ∩ C) = 0.15,P(B ∩ C) = 0.1
P(A ∩B ∩ C) = 0.08

(1) The probability that the selected student has ≥ 1 of 3 types of cards=?
(2) P(B|A) =?, P(A|B) =?

◦ P(A ∪B ∪ C) = 0.73

◦ P(B|A) = P(A∩B)
P(A) = 0.5,

P(A|B) = P(A∩B)
P(B) = 0.75
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Example 3
Randomly select a student at Columbia:
◦ A = {the selected student has a American Express card}
B = {the selected student has a Barclays card}
C = {the selected student has a Chase card}

◦ P(A) = 0.6,P(B) = 0.4,P(C) = 0.2.
P(A ∩B) = 0.3,P(A ∩ C) = 0.15,P(B ∩ C) = 0.1
P(A ∩B ∩ C) = 0.08

(3) Given that the student has an American Express card, what is the
probability that she/he has ≥ 1 of the other two types of cards?

◦ P(B ∪ C|A) = P((B∪C)∩A)
P(A) =

0.22+0.08+0.07
0.6 = 0.617
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Example 4
A system consists of 7 independent components A1, …, D.
P(A1 works) = P(A2 works) = 0.9
P(B1 works) = P(B2 works) = 0.8
P(C1 works) = P(C2 works) = 0.7, P(D works) = 0.95
The chance that the system will work properly = ?

P({the system works}) = P(((A1 ∩B1 ∩ C1) ∪ (A2 ∩B2 ∩ C2)) ∩D)

= P((A1 ∩B1 ∩ C1) ∪ (A2 ∩B2 ∩ C2))P(D)

= [2P(A1 ∩B1 ∩ C1)− P((A1 ∩B1 ∩ C1) ∩ (A2 ∩B2 ∩ C2))]P(D)

= [2P(A1)P(B1)P(C1)− P(A1 ∩B1 ∩ C1)P(A2 ∩B2 ∩ C2)]P(D)

= [2× 0.9× 0.8× 0.7− (0.9× 0.8× 0.7)2]× 0.95

= 0.717
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Conditional independence

Independence: Two events A and B are independent if
P(A ∩B) = P(A)P(B), denoted as A ⊥⊥ B. They are dependent
otherwise, denoted as A ∕⊥⊥ B.

Conditional independence: Two events A and B are independent
conditioning on event C if P(A ∩B|C) = P(A|C)P(B|C), denoted as
(A ⊥⊥ B)|C. They are dependent otherwise, denoted as (A ∕⊥⊥ B)|C.

Can be extended to the case of multiple (≥ 2) events too.
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Example 5
◦ 5% of the population has a certain disease
◦ A diagnostic test:

⊲ correctly detects the presence of the disease 98% of the time
⊲ correctly detects the absence of the disease 99% of the time

◦ Randomly select an individual -> run tests twice -> Both positive
◦ The two test results are independent given the presence/absence of the

disease on the selected individual
Question: The probability that this individual has the disease = ?

◦ Pi = {i-th test positive}, i = 1, 2

◦ D = {this individual has the disease}
◦ Goal: P(D|P1 ∩ P2) =?
◦ What we know:

⊲ P(D) = 0.05. P(Pi|D) = 0.98, P(P c
i |Dc) = 0.99, i = 1, 2

⊲ P1 ⊥⊥ P2 given D, P1 ⊥⊥ P2 given Dc

◦ Bayes' Theorem!
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Example 5

◦ Pi = {i-th test positive}, i = 1, 2

◦ D = {this individual has the disease}
◦ Goal: P(D|P1 ∩ P2) =?
◦ What we know:

⊲ P(D) = 0.05. P(Pi|D) = 0.98, P(P c
i |Dc) = 0.99, i = 1, 2

⊲ P1 ⊥⊥ P2 given D, P1 ⊥⊥ P2 given Dc

By Bayes' Theorem,

P(D|P1 ∩ P2) =
P(P1 ∩ P2|D)P(D)

P(P1 ∩ P2|D)P(D) + P(P1 ∩ P2|Dc)P(Dc)

=
P(P1|D)P(P2|D)P(D)

P(P1|D)P(P2|D)P(D) + P(P1|Dc)P(P2|Dc)P(Dc)

=
0.98× 0.98× 0.05

0.98× 0.98× 0.05 + 0.01× 0.01× 0.95
= 0.998.
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Reading list (optional)

◦ "Probability and Statistics for Engineering and the Sciences" (9th
edition):

⊲ Chapter 2.5
◦ "OpenIntro statistics" (4th edition, free online, download [here]):

⊲ Chapter 3.1.7 and 3.2.6

https://leanpub.com/os
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