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Recap: independence and conditional independence
Independence:
◦ Two events A and B are independent if P(A|B) = P(A), denoted as
A ⊥⊥ B. They are dependent otherwise, denoted as A ∕⊥⊥ B.

◦ Events A1, . . . , An are (mutually) independent if for every
k = 2, 3, . . . , n and every subset of indices i1, i2, . . . , ik,

P(Ai1 ∩Ai2 ∩ . . . ∩Aik) = P(Ai1)P(Ai2) · · ·P(Aik).

Conditional independence:
◦ Two events A and B are independent conditioning on event C if
P(A ∩B|C) = P(A|C)P(B|C), denoted as (A ⊥⊥ B)|C. They are
dependent otherwise, denoted as (A ∕⊥⊥ B)|C.

◦ Events A1, . . . , An are (mutually) independent conditioning on event
C if for every k = 2, 3, . . . , n and every subset of indices i1, i2, . . . , ik,

P(Ai1 ∩Ai2 ∩ . . . ∩Aik |C) = P(Ai1 |C)P(Ai2 |C) · · ·P(Aik |C).
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Recap: probability calculation

P(·) : A ∈ a set of all events → a number P(A) (a mapping/function
which maps an event to a number)

Three axioms:
◦ 0 ≤ P(A) ≤ 1 for any event A ⊆ Ω

◦ P(Ω) = 1, P(∅) = 0

◦ If A1, A2, A3, …, An is a collection of disjoint (mutually exclusive)
events, then

P(A1 ∪A2 ∪ . . . ∪An) =

n!

i=1

P(Ai).

Theorem: In an experiment consisting of N outcomes with equal
probability, for any event A,

P(A) =
N(A)

N
,

where we use counting techniques to calculate N(A) and N .
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Recap: probability calculation

General idea to calculate probability:
(1) Translate the conditions and the event of interest by probability
language
(2) Calculate.

⊲ For equally likely outcomes, consider P(A) = N(A)
N combined with

counting techniques
⊲ If conditional probability is easier to calculate or it is given, consider

multiplication rule, rule of total probability, and Bayes' Theorem
⊲ See whether there are independence/conditional independence or

not, which may help us to do the calculation
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Today's goal

◦ Understand the random variable and know how to use it in practice
◦ Understand the probability distribution, probability mass function (pmf),

probability density function (pdf), and cumulative distribution function
(cdf)

◦ Know the difference between discrete and continuous random variables
◦ See some examples of discrete and continuous random variables
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Random Variables
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Why do we need random variables
It seems that we have covered everything about probability...
◦ Frequently, we are interested in some numerical aspects of the

outcome
Example:

⊲ In political poll, the number of people voting for Trump among 100
⊲ The number of heads when flipping a coin 10 times

◦ And sometimes we are interested in the probability of many events
instead of a single one, where we want to systematically give a formula
for every case instead of studying the event separately
Example:

⊲ The number of people voting for Trump among 100 (denoted as
X): P({the number = 20}) =?, P({the number = 50}) =?,
P({the number = 100}) =?

⊲ The number of heads when flipping a coin 10 times (denoted as
X): P({the number = 5}) =?, P({the number = 0}) =?,
P({the number = 10}) =?
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Random variables

Definition: Given an experiment and the sample space Ω, a random
variable is a function mapping a outcome (ω ∈ Ω) into a real number, i.e.

X : ω ∈ Ω *→ X(ω) ∈ (−∞,+∞).

Example 1: Toss a coin 3 times: the sample space is
Ω = {H, T}× {H, T}× {H, T}. Random variable X = the number of
heads.

For instance: X({HHH}) = 3, X({THH}) = X({HHT}) = 2,
X({TTT}) = 0
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Random variables
Definition: Given an experiment and the sample space Ω, a random
variable is a function mapping a outcome (ω ∈ Ω) into a real number,
i.e.

X : ω ∈ Ω *→ X(ω) ∈ (−∞,+∞).
Example 2: Toss two dice: the sample space is
Ω = {1, 2, . . . , 6}× {1, 2, . . . , 6}. Random variable X = the sum of dice.

For instance: X({(1, 3)}) = 4, X({(4, 5)}) = 9, X({(6, 6)}) = 12
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Random variables
Definition: Given an experiment and the sample space Ω, a random
variable is a function mapping a outcome (ω ∈ Ω) into a real number, i.e.

X : ω ∈ Ω *→ X(ω) ∈ (−∞,+∞).

Example 3: Suppose that we select a location at random (defined by
latitude and longitude) and define X to be the temperature at that
location at the current time.
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Discrete and continuous random variables

◦ When the possible values of of a random variable are countable1, the
random variable is discrete.
Examples: the number of heads/tails of coin flipping, the number of
dice etc.

◦ When both of the following apply, the random variable is continuous.
⊲ The range is uncountable (e.g.: an interval on the number line)
⊲ No possible value of the variable has positive probability, i.e.
P(X = c) = 0 for any number c.

Examples: the temperature at a random location

1either constitute a finite set or else can be listed in an infinite sequence in which
there is a first element, a second element, and so on ("countably" infinite)
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Exercise
Describe the set of possible values for the variable, and state whether the
variable is discrete.

(1) X = the number of unbroken eggs in a randomly chosen standard
egg carton
(2) Y = the number of students on a class list for a particular course
who are absent on the first day of classes
(3) U = the number of times a duffer has to swing at a golf ball before
hitting it
(4) X = the length of a randomly selected rattlesnake
(5) Z = the sales tax percentage for a randomly selected Amazon
purchase
(6) Y = the pH of a randomly chosen soil sample
(7) X = the tension (psi) at which a randomly selected tennis racket
has been strung
(8) X = the total number of times three tennis players must spin their
rackets to obtain something other than UUU or DDD (to determine
which two play next)
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Random variables and random events

Compare their definitions:
◦ A random variable is a function mapping a outcome (ω ∈ Ω) into a

real number, i.e. X : ω ∈ Ω *→ X(ω) ∈ (−∞,+∞).
◦ An event is a set (collection) of outcomes.

Furthermore, for any subset B on the number line 2, {ω : X(ω) ∈ B} is a
random event, which is a set (collection) of outcomes. And we can
calculate the corresponding probability.

Therefore, P(X ∈ B) = P({ω : X(ω) ∈ B}).

2Actually not "any" subset, but the current statement is enough and correct for this
course. You will learn more in a PhD-level probability course in the future. Currently, B
can be any union/intersection of intervals/points on the real line. E.g., B can be (0, 1),
[−2,+∞), (5, 5.5], {1}, {−1, 2.5}, (−3,−1) ∪ (9, 10] etc.
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Random variables and random events
Let's recall our previous example:

Toss a fair coin 3 times: the sample space is
Ω = {H, T}× {H, T}× {H, T}. Random variable X = the number of
heads.

Therefore,

P(X = 3) = P({HHH}) = 1

8
,

P(X = 2) = P({HTH, THH, HHT}) = 3

8
,

P(X = 1) = P({HTT, THT, TTH}) = 3

8
,

P(X = 0) = P({TTT}) = 1

8
.



15/32

Distribution of Random Variables
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Distribution

Definition: The (probability) distribution of a random variable X
describes how the total probability of 1 is distributed among all possible
values of X. It tells us P(X ∈ B) = P({ω : X(ω) ∈ B}) for any subset B
of number line 3.
Definition: Cumulative distribution function (cdf) of a r.v. X is
defined as

F (x) = P(X ≤ x)

for any number x (including −∞ and +∞).
Proposition: The cdf can describe the distribution of random variables.
Why? (Not need to know): Because any subset B of the real line can be
expressed as the union/intersection/difference of intervals like (−∞, x].
E.g.: (5, 10] = (−∞, 10]\(−∞, 5])

⇒ Then P(X ∈ (5, 10])
why?
= P(X ≤ 10)− P(X ≤ 5) = F (10)− F (5).

3Currently, B can be any union/intersection of intervals/points on the real line. E.g.,
B can be (0, 1), [−2,+∞), (5, 5.5], {1}, {−1, 2.5}, (−3,−1) ∪ (9, 10] etc.
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Distribution
Definition: Cumulative distribution function (cdf) of a r.v. X is
defined as

F (x) = P(X ≤ x)

for any number x (including −∞ and +∞).

Remark:
◦ F (+∞) = 1

because (−∞,+∞] ⊇ Ω ⇒ F (+∞) = P((−∞,+∞]) ≥ P(Ω) = 1

◦ F (−∞) = 0
because (−∞,−∞) behaves like an empty set 4

⇒ F (−∞) = P((−∞,−∞)) = 0

◦ Therefore 0 ≤ F (x) ≤ 1 for any number x
◦ F (x) is an increasing function, i.e. for x1 ≤ x2, F (x1) ≤ F (x2) (why?)
◦ (Not required to know) F (x) is right-continuous, i.e.

limz→x+0 F (z) = F (x)
4not accurate, but enough for this course
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Distribution
Definition: For a discrete r.v. X, its distribution can also be described by
probability mass function (pmf)

p(x) = P(X = x) = P({ω : X(ω) = x})

for any number x (including −∞ and +∞).

◦ For discrete r.v., suppose S = {z1, z2, z3, . . .} including all possible
values of X, then:

⊲ p(x) > 0 only when x ∈ S, and p(x) = 0 elsewhere
⊲ F (x) =

"
i:zi≤x p(zi)

⊲ p(zi) = F (x2)− F (x1) for any x1 and x2 with (x1, x2] ∩ S = {zi}
◦ Two conditions for a valid pmf:

(1) p(x) ≥ 0 for any x;
(2)

"
x∈S p(x) = 1.

◦ It's senseless to talk about pmf of continuous r.v., because
P(X = x) = 0 for any number x if X is continuous! (will see that from
the view of integral)
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cdf and pmf of discrete random variables

cdf: F (x) = P(X ≤ x)
pmf: p(x) = P(X = x)

For discrete r.v., suppose S = {z1, z2, z3, . . .} including all possible values
of X, then:
◦ p(x) > 0 only when x ∈ S, and p(x) = 0 elsewhere
◦ F (x) =

"
i:zi≤x p(zi)

◦ p(zi) = F (x2)− F (x1) for any x1 and x2 with (x1, x2] ∩ S = {zi}
◦ P(x1 < X ≤ x2) = F (x2)− F (x1) =

"
i:x1<zi≤x2

p(zi)

Example: The pmf of a discrete r.v. is

F (2) = P(X ≤ 2) = p(0) + p(1) + p(2) = 0.05 + 0.1 + 0.15 = 0.3,F (1) =
P(X ≤ 1) = p(0) + p(1) = 0.05 + 0.1 = 0.15,
P(1 ≤ X ≤ 3) = p(1) + p(2) + p(3) = 0.1 + 0.15 + 0.25 = 0.5
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Example of discrete distribution: binomial distribution

Toss a unfair coin 10 times. Suppose each time the probabilities of heads
and tails are p and 1− p, respectively. Random variable X = the number
of heads.
◦ P(X = 0) = P({TTTTTTTTTT}) = (1− p)10

◦ P(X = 1) = P({9 T's and 1 H}) =
#
10
1

$
p(1− p)9

◦ ...
◦ In general, the pmf
p(x) = P(X = x) = P({(10− x) T's and x H's}) =

#
10
x

$
px(1− p)10−x,

x = 0, . . . , 10.
◦ The cdf F (x) =

"
k:0≤k≤x p(k) =

"
k:0≤k≤x

#
10
k

$
pk(1− p)10−k

We call such a variable X as binomial random variable and its
distribution as the binomial distribution.
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cdf and pdf of continuous random variables
Definition: For a continuous r.v. X, its distribution can also be described
by a non-negative probability density function (pdf) f(x) which
satisfies

P(a < X ≤ b) = F (b)− F (a) =

% b

a
f(x)dx

for any two numbers a and b with a ≤ b (including −∞ and +∞).

◦ By letting a = −∞: cdf F (b) =
& b
−∞ f(x)dx

◦ By Fundamental theorem of calculus (Newton-Leibniz Theorem): the
cdf F of a continuous variable is differentiable and F ′(x) = f(x)

◦ For continuous r.v., the single point doesn't matter, i.e.
P(a < X ≤ b) = P(a ≤ X ≤ b) (why?)

◦ An appropriate pdf should satisfy two conditions:
(1) f(x) ≥ 0 for any number x
(2)

& +∞
−∞ f(x)dx = 1
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cdf and pdf of continuous random variables

Definition: For a continuous r.v. X, its distribution can also be described
by probability density function (pdf) f(x) which satisfies

P(a < X ≤ b) = F (b)− F (a) =

% b

a
f(x)dx

for any two numbers a and b with a ≤ b (including −∞ and +∞).

pdf cdf

The probability of a r.v. falling into a region is the area of shaded region
under pdf f(x), which connects to the physical meaning of the integral!
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cdf and pdf of continuous random variables
Definition: Probability density function (pdf) f(x) satisfies

P(a < X ≤ b) = F (b)− F (a) =

% b

a
f(x)dx

for any two numbers a and b with a ≤ b (including −∞ and +∞).
◦ By letting a = −∞: cdf F (x) =

& x
−∞ f(x)dx

◦ F ′(x) = f(x)

pdf cdf
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Exercise: continuous variables

Given the pdf, write down the corresponding cdf:
(1) f(x) = 1, 0 ≤ x ≤ 1 and f(x) = 0 elsewhere
(2) f(x) = 3

2x
2,−1 ≤ x ≤ 1 and f(x) = 0 elsewhere

(3) f(x) = 2e−2x, x ≥ 0 and f(x) = 0 elsewhere

Given the cdf, write down the corresponding pdf:
(1) F (x) = x, 0 ≤ x ≤ 1

(2) F (x) = 1− e−x, x ≥ 0
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Example of continuous distribution: uniform distribution

We say X follow a uniform distribution on [A,B], if:

◦ Its pdf is f(x) =

'
1

B−A , A ≤ x ≤ B

0, elsewhere

◦ Its cdf is F (x) =

(
)*

)+

0, x ≤ A
x−A
B−A , A < x ≤ B

1, x > B

pdf
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Example: uniform distribution

We say X follow a uniform distribution on [A,B], if:

◦ Its pdf is f(x) =

'
1

B−A , A ≤ x ≤ B

0, elsewhere

◦ Its cdf is F (x) =

(
)*

)+

0, x ≤ A
x−A
B−A , A < x ≤ B

1, x > B

cdf
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Comparison: discrete and continuous variables

Underlying intuition:
◦ The probability "mass" of discrete variables concentrates at a few points
◦ The probability "mass" of continuous variables spreads out in a dense

region

Characterization of their distributions:
◦ cdf is available for both of them: F (x) = P(X ≤ x)

◦ pmf only works for discrete variables: p(x) = P(X = x)

◦ pdf only works for continuous variables: f(x) = F ′(x) and
F (x) =

& x
−∞ f(t)dt
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Comparison: discrete and continuous variables
Discrete distribution:

pmf cdf
Continuous distribution:

pdf cdf
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Relative frequency bar chart and pmf
Suppose a r.v. X has distribution with this pmf. I sampled X1, X2, …,
X1000 independently from this distribution.

pmf bar chart
◦ Empirical relative frequency is an approximation of pmf.
◦ If we sample infinite points, the relative frequency will equal pmf.
◦ We will discuss more on this next week.
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Density histogram and pdf
Suppose a r.v. X has distribution with this pdf. I sampled X1, X2, …,
X1000 independently from this distribution.

pdf histogram
◦ Empirical density histogram is an approximation of pdf.
◦ If we sample infinite points and the bin width is infinitely small, the

density histogram will be the same as the pdf curve.
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Reading list (optional)

◦ "Probability and Statistics for Engineering and the Sciences" (9th
edition):

⊲ Chapter 3.1, 3.2, 4.1 and 4.2 (skip the part of expectations)
◦ "OpenIntro statistics" (4th edition, free online, download [here]):

⊲ Chapter 3.4 and 3.5 (It's ok if you feel difficult to understand the
expectation and variance. We will cover them next week.)

https://leanpub.com/os
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