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Recap: Joint distribution and independence

◦ The joint distribution of two random variables X and Y describes how
the total probability of 1 is distributed among all possible values of pair
(X,Y ). It tells us

P(X ∈ B1, Y ∈ B2) = P({ω : X(ω) ∈ B1} ∩ {ω : Y (ω) ∈ B2})

for any subsets B1 and B2 of number line.
◦ We can define cdf, pmf and pdf for multiple r.v.'s similar to the

one-variable case.
◦ r.v.'s X and Y are independent iff P(X ∈ B1, Y ∈ B2) = P(X ∈ B1)×
P(Y ∈ B2) for any subsets B1 and B2 of the number line, i.e.

{ω : X(ω) ∈ B1} ⊥⊥ {ω : Y (ω) ∈ B2}.

This means independence between r.v.'s is essentially the independence
between multiple pairs of events (n-"tuple" for n r.v.'s)!
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Recap: Expectation and expected values

Sample mean: Data x1, . . . , xn ⇒ x̄ = 1
n

!n
i=1 xi.

Definition: The expectation of a r.v. X is defined as

EX = µX =

"!
j xj × P(X = xj), X is discrete,# +∞

−∞ xf(x)dx, X is continuous and f is the pdf

◦ Expectation (Or expected value) of a random variable is its long-run
average. When x1, . . . , xn

i.i.d.∼ X and n → +∞, x̄ ≈ EX. 1

◦ EX indicates the "center" of X. It is not a value that is likely/expected
to get.

◦ Linearity of expectations: Suppose a and b are two constants
(numbers), then E(aX + b) = aE(X) + b.

1i.i.d. means "identically and independent distributed (as)"
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Recap: Variance and standard deviation
Sample variance: Data x1, . . . , xn ⇒ s2 = 1

n−1

!n
i=1(xi − x̄)2.

Definition: The variance of a r.v. X is defined as

Var(X) = E(X − EX)2

=

"!
j(xj − x̄)2 × P(X = xj), X is discrete,# +∞

−∞ (x− EX)2f(x)dx, X is continuous and f is the pdf

The standard deviation of X is SD(X) =
$

Var(X)

◦ A shortcut formula: Var(X) = E(X2)− (EX)2

◦ When x1, . . . , xn
i.i.d.∼ X and n → +∞, s2 ≈ Var(X).

◦ "Linearity" of variances: Suppose a and b are two constants
(numbers), then:

⊲ Var(aX + b) = a2Var(X)
⊲ SD(aX + b) = |a|SD(X)

◦ The variance and standard deviation is always non-negative.
◦ When Var(X) = 0, we have P(X = EX) = 1.
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Recap: Covariance and correlation
Covariance between X and Y :

Cov(X,Y ) = E[(X − EX)(Y − EY )] = E(XY )− (EX)(EY )

The correlation between X and Y is defined by
Corr(X,Y ) = ρX,Y =

Cov(X,Y )$
Var(X)Var(Y )

◦ Cov(X,Y ) can be positive, negative, or 0, while −1 ≤ Corr(X,Y ) ≤ 1

◦ When Cov(X,Y ) = 0 or ρX,Y = 0, we say X and Y are (linearly)
uncorrelated.

◦ Independence ⇒ uncorrelation, but uncorrelation ∕⇒ independence
◦ ρX,Y measures the strength of linear association between X and Y .

The larger the |ρX,Y |, the stronger the linear association.
◦ ρX,Y > 0 means positive association/correlation, i.e. larger X tends to

associate with large Y and smaller X tends to associate with smaller Y
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Recap: Population universe and sample universe

Sample universe (what we see)

Data ⇒
◦ Sample mean
◦ Sample variance
◦ Sample standard deviation
◦ Sample quantiles (sample median,

quartiles...)
◦ Sample maximum/minimum
◦ Sample covariance/correlation
◦ Bar chart (discrete r.v.)
◦ Histogram (continuous r.v.)

Population universe (inaccessible)

Probability distribution ⇒
◦ Expectation/Mean
◦ Variance
◦ Standard deviation
◦ Quantiles (median, quartiles

...)
◦ Maximum/minimum
◦ Covariance/correlation
◦ pmf (discrete r.v.)
◦ pdf (continuous r.v.)
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Today's goal: Know some commonly used distributions

Discrete distributions:
◦ Bernoulli distribution
◦ Binomial distribution
◦ Geometric distribution
◦ Hyper-geometric distribution
◦ Poisson distribution

Continuous distributions:
◦ Uniform distribution
◦ Normal distribution
◦ Exponential distribution
◦ χ2-distribution
◦ t-distribution
◦ F-distribution
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Discrete Distributions
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Bernoulli distribution
Bernoulli trials: (like coin tossing)
◦ Each trial has two outcomes: denoted as S (success) and F (failure).
◦ For each trial, P(S) = p and P(F ) = q = 1− p.
◦ The trials are independent.
Associated random variable: A r.v. X satisfies P(X = 1) = p and
P(X = 0) = 1− p, then we call X a Bernoulli random variable and the
corresponding distribution the Bernoulli distribution, denoted by
X ∼ Bernoulli(p).
◦ EX = p, Var(X) = p(1− p)

Verification:
E(X2) = 12×p+02×(1−p) = p ⇒ Var(X) = E(X2)−(EX)2 = p−p2.

Examples:
◦ Flipping a fair coin and X = 1 represents the heads. p = 1/2.
◦ Quality control: Defective/Good
◦ Clinical trial: Survival/death
◦ Sampling survey: Coke/Pepsi
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Bernoulli distribution

A r.v. X satisfies P(X = 1) = p and P(X = 0) = 1− p, then we call X a
Bernoulli random variable and the corresponding distribution the
Bernoulli distribution.

Sometimes people call such p as the probability of success.

Here different values of p define different Bernoulli distributions, which we
call a family of distributions. And we call such p as a parameter. Usually
people first assume the data come from some distribution, then estimate
the corresponding parameter by using the collected data.
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Binomial distribution

Bernoulli trials: (like coin tossing)
◦ Each trial has two outcomes: denoted as S (success) and F (failure).
◦ For each trial, P(S) = p and P(F ) = q = 1− p.
◦ The trials are independent.
We can carry out Bernoulli trials for many times and see how many "S" we
get.

For example, flip a fair coin for 100 times and count the number of heads.
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Binomial distribution
Let X be the number of successes in a Bernoulli process with n trials
and probability of success p. Then, X follows a Binomial distribution
and X is a Binomial variable, denoted by X ∼ Bin(n, p).
◦ If we denote Xi the Bernoulli r.v. corresponding to outcome of i-th

Bernoulli trial, then the Binomial r.v. X =
!n

i=1Xi.
◦ pmf: p(x) = P(X = x) =

%
n
x

&
px(1− p)n−x, where x = 0, . . . , n.

◦ cdf: P(X ≤ x) =
!x

i=0 P(X = x)

◦ EX = np, Var(X) = np(1− p)
Verification: EX = E(

!n
i=1Xi) = np.

Since Xi's are independent, Var(X) =
!n

i=1 Var(Xi) = p− p2.

Example:
◦ Flip a fair coin for n = 100 times and X represents the number of

heads. Then X ∼ Bin(100, 1/2).
◦ Toss a die for n = 10 times and X represents the number of times when

we get numbers 1 or 3.Then X ∼ Bin(10, 1/3).
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Binomial distribution: pmf
pmf: P(X = x) =

%
n
x

&
px(1− p)n−x, where x = 0, . . . , n.

pmf of Bin(10, 1/3)
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Geometric distribution
Bernoulli trials:
◦ Each trial has two outcomes: denoted as S (success) and F (failure).
◦ For each trial, P(S) = p and P(F) = q = 1− p.
◦ The trials are independent.

We can carry out Bernoulli trials for many times and see
◦ Binomial distribution: how many "S" we get.
◦ Geometric distribution: how many trials until we first get an "S". We

denote it as X ∼ Geometric(p).

For example:
◦ FSFFSF· · · X = 2
◦ FFFFFS· · · X = 6

pmf: p(x) = P(X = x) = P({F………F' () *
(x−1) F's

S}) = qx−1p, where x = 1, 2, . . .

cdf: F (x) = 1− P(X > x) = 1− P({F………F' () *
x F's

}) = 1− qx

EX = 1/p, Var(X) = 1/p2
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Geometric distribution

Example: A man with n keys wants to open his door and tries the keys at
random (unsuccessful keys are not eliminated from further selections).
Exactly one key will open the door.
◦ What's the probability that he succeeds at the 3rd time.
◦ What's the probability that he succeeds in 3 times.
◦ How many times is he expected to try until opening it?

This is a Bernoulli trial process and each time it's a success if the door is
open, otherwise it's a failure.The number of trials until opening it,
X ∼ Geometric(1/n). (p = 1/n, q = 1− 1/n)
◦ P(X = 3) = (1− 1/n)2(1/n)

◦ P(X ≤ 3) = 1− (1− 1/n)3

◦ EX = n
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Hyper-geometric distribution
Recall: Binomial process with n trials: trials are independent

In a sampling survey, one typically draws without replacement.

Suppose there are N products in total with M defective ones and N −M
good ones. We sample n from these N products without replacement.

Let X be the number of defective products, which follows a
hyper-geometric distribution.
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Hyper-geometric distribution
Let X be the number of defect products, which follows a
hyper-geometric distribution.

pmf: P(X = x) =
(Mx )(

N−M
n−x )

(Nn)
, if max{0, n−N +M} ≤ x ≤ min{n,M},

and P(X = x) = 0 elsewhere.

You will derive it in HW3!
EX = n× M

N .
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Comparison: hyper-geometric distribution and binomial
distribution

Suppose there are N products in total with M defective ones and N −M
good ones.
◦ When sampling n times with replacement, the distribution of the

number of defective ones is binomial.
◦ When sampling n times without replacement, the distribution of the

number of defective ones is hyper-geometric.
◦ When sampling a small fraction from a large population, the process is

nearly Bernoulli trial process ⇒ can use the binomial to approximate the
hyper-geometric
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Comparison: hyper-geometric distribution and binomial
distribution
Example: Randomly draw 4 balls from a bag of 6 red balls and 4 black
balls.
◦ If we draw with replacement, what's the probability of getting 2 reds

ones and 2 black ones?
◦ If we draw without replacement, what's the probability again?
◦ Calculate and compare when there are 600 red balls and 400 black balls.

◦ X = number of red balls ∼ Bin(4, 0.6).
P(X = 2) =

%
4
2

&
× 0.62 × 0.42 = 0.3456

◦ X = number of red balls ∼
Hypergeometric.
P(X = 2) =

(62)(
4
2)

(104 )
= 0.4285
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Comparison: hyper-geometric distribution and binomial
distribution
Example: Randomly draw 4 balls from a bag where there are 6 red balls
and 4 black balls.
◦ If we draw with replacement, what's the probability of getting 2 reds

ones and 2 black ones?
◦ If we draw without replacement, what's the probability again?
◦ Calculate and compare when there are 600 red balls and 400 black balls.

◦ X = number of red balls
∼ Bin(4, 0.6).P(X = 2) =%
4
2

&
× 0.62 × 0.42 = 0.3456

◦ X = number of red balls ∼
Hypergeometric.
P(X = 2) =

(6002 )(
400
2 )

(10004 )
= 0.3462

◦ Intuition: taking out a few balls will not
affect the ball proportion much...
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Poisson distribution (optional)

We say X follows Poisson distribution if its pmf safisfies

P(X = x) =
e−λλx

x!
, x = 0, 1, 2, . . . ,

which is denoted by X ∼ Poisson(λ). And EX = λ, Var(X) = λ.

Motivation: If
◦ The number of events occurring in any time interval is independent of

the number of events in any other non-overlaping interval;
◦ Almost impossible for two or more events to occur simultaneously;
◦ The average number of occurrences per time unit is constant λ;
then it can be shown that the number of occurrences in a unit time
interval ∼ Poisson(λ).
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Continuous Distributions
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Uniform distribution
We say X follow a uniform distribution on [A,B], if:

◦ Its pdf is f(x) =

"
1

B−A , A ≤ x ≤ B

0, elsewhere

◦ Its cdf is F (x) =

+
,-

,.

0, x ≤ A
x−A
B−A , A < x ≤ B

1, x > B

pdf
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Normal distribution
A continuous r.v. X follows a normal distribution (or Gaussian
distribution) if its pdf is given by

f(x) =
1√
2πσ

exp
/
−(x− µ)2

2σ2

0
, −∞ < x < +∞,

denoted by X ∼ N(µ,σ2). µ and σ2 are called the mean parameter and
variance parameter.
Property:
◦ EX = µ, Var(X) = σ2.
◦ pdf f is symmetric around µ: f(µ− x) = f(µ+ x) for any x

pdf of N(0, 1)
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Normal distribution
N(0, 1) is called the standard normal distribution where µ = 0 and
σ2 = 1. It pdf and cdf are denoted as φ and Φ, defined by

φ(x) =
1√
2π

e−x2/2, Φ(x) =

1 x

−∞
φ(t)dt.

Φ(x) doesn't have an explicit expression... which is bad.
◦ Standardization property: If X ∼ N(µ,σ2), then Z = X−µ

σ ∼ N(0, 1).
◦ φ is symmetric around 0: φ(x) = φ(−x) for any x.
◦ (Consequence of the second property) Φ(−x) = 1− Φ(x) for any x
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Normal distribution

Standardization property:
◦ If X ∼ N(µ,σ2), then Z = X−µ

σ ∼ N(0, 1).

Consequence:
◦ P(X ≤ x) = P(Z ≤ x−µ

σ ) = Φ(x−µ
σ )

◦ P(a ≤ X ≤ b) = P(a−µ
σ ≤ Z ≤ b−µ

σ ) = Φ( b−µ
σ )− Φ(a−µ

σ )

Therefore, if we can calculate the cdf of the standard normal r.v. (i.e. Φ),
then we can immediately calculate probability related to any normal r.v.!
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The z-table

z-table lists the cdf at a fine grid of points.

Two uses:
◦ Look up the cdf value at a specific point;
◦ Given a specific cdf value, look up the corresponding quantile.

See Table A.3 of "Devore, J. L. (2011). Probability and Statistics for
Engineering and the Sciences. Cengage learning. (9th edition)". You can
find it on courseworks files as well.
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Example: normal distribution

If X ∼ N(3, 4), compute P(1 ≤ X ≤ 6).

We know µ = 3 and σ = 2 (not 4).
Step 1 (transforming X to standard normal):

P(1 ≤ X ≤ 6) = P
21− 3

2
≤ X − 3

2' () *
∼N(0,1)

≤ 6− 3

2

3

= P(−1 ≤ Z ≤ 1.5)

= Φ(1.5)− Φ(−1)

Step 2 (looking up z-table): Φ(1.5)−Φ(−1) = 0.9332− 0.1587 = 0.7745.
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Example: normal distribution

If X ∼ N(3, 4), find its 25% quantile.

We know µ = 3 and σ = 2. We want to find x that satisfies
P(X ≤ x) = 0.25.

Step 1 (transforming X to standard normal):

0.25 = P(X ≤ x) = P
2X − 3

2' () *
∼N(0,1)

≤ x− 3

2

3

= P
2
Z ≤ x− 3

2

3

= Φ
2x− 3

2

3

Step 2 (looking up z-table): x−3
2 = Φ−1(0.25) ≈ −0.67 ⇒ x = 1.66.
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68-95-99.7 rule (3σ-rule)
Suppose X ∼ N(µ,σ2).
◦ P(µ− σ ≤ X ≤ µ+ σ) = Φ(3)− Φ(−3) = 0.6826 ≈ 0.68

◦ P(µ− 2σ ≤ X ≤ µ+ 2σ) = Φ(2)− Φ(−2) = 0.9544 ≈ 0.95

◦ P(µ− 3σ ≤ X ≤ µ+ 3σ) = Φ(1)− Φ(−1) = 0.9974 ≈ 0.997

This will be useful in a wide range of practical settings, especially when
trying to make a quick estimate without a calculator or z-table.
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The "linearity" of expectation and variance (A general
version)

Suppose X1, . . . , Xn are random variables. a1, . . . , an, b are constants.
◦ E[(

!n
i=1 aiXi) + b] =

!n
i=1(aiEXi) + b

◦ If X1, . . . , Xn are independent, then
Var[(

!n
i=1 aiXi) + b] =

!n
i=1 a

2
i Var(Xi)
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Sum of independent normal variables

Suppose X ∼ N(µX ,σ2
X), Y ∼ N(µY ,σ

2
Y ) and X ⊥⊥ Y .

Theorem: X + Y ∼ N(µX + µY ,σ
2
X + σ2

Y )

Warning: This only holds when X and Y are independent!
Counter-example when X ∕⊥⊥ Y : Y = −X

Consequence:
◦ Xi ∼ N(µi,σ

2
i ). Then

!n
i=1Xi ∼ N(

!n
i µi,

!n
i=1 σ

2
i )

◦ X1, . . . , Xn
i.i.d.∼ N(µ,σ2). Then 1

n

!n
i=1Xi ∼ N(µ,σ2/n)

Proof: By induction:
!n

i=1Xi ∼ N(µ̃, σ̃2). Next we will find µ̃ and σ̃2.
Since Xi's are independent: µ̃ = E(

!n
i=1Xi) =

!n
i=1 µi,

σ̃2 = Var(
!n

i=1Xi) =
!n

i=1 Var(Xi) =
!n

i=1 σ
2
i .

Review the general "linearity" of expectation and variance from last
lecture!
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Exponential distribution
A continuous r.v. X follows a exponential distribution if its pdf is given
by

f(x) = λ exp(−λx), x ≥ 0,

denoted by X ∼ Exp(λ), where λ is the parameter.
Property:
◦ cdf: F (x) =

# x
0 λ exp(−λt)dt = 1− exp(−λx), x ≥ 0.

◦ EX =
# x
0 tλ exp(−λt)dt = λ−1,Var(X) = λ−2. (You will prove them in

HW3)

pdf of Exp(1)
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Exponential distribution: the memoryless property
The exponential distribution has the following memoryless property:
Suppose X ∼ Exp(λ), then

P(X > a+ x|X > a) =
P(X > a+ x)

P(X > a)
= exp(−λx) = P(X > x),

for any a ≥ 0 and x ≥ 0.
"=": LHS = exp(−λ(a+x))

exp(−λa) = exp(−λx).
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Exponential distribution

Suppose that an average of 30 customers per hour enter a store and the
time between arrivals is exponentially distributed.
◦ Suppose the last customer just arrived. What's the probability that the

next customer will show up in 3 minutes?
◦ Suppose that 10 minutes has passed since the last customer arrived.

Will your answer change?

◦ On average 2 minutes elapse between successive visits. Therefore
waiting time (unit: minute) X ∼ Exp(λ) and
EX = λ−1 = 2 ⇒ λ = 1/2. Thus P(X ≤ 3) = 1− e−3 = 0.9502.

◦ Since this is an unusually long amount of time, it would seem more
likely for a customer to arrive within the next minute. But by
memoryless property, the waiting time from now until the next customer
arrives still follows Exp(1/2), therefore the answer is the same!



36/36

Many thanks to
Yang Feng
Joyce Robbins
Chengliang Tang
Owen Ward
Wenda Zhou
And all my teachers in the past 25 years


