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Multi-task learning (MTL) and transfer learning (TL)

o Multi-task learning (MTL): Perform well on all (or most) tasks
o Transfer learning (TL): Perform well on the target task
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Representation MTL and TL
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In neural nets: freezing + fine tuning
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A theoretical formulation

o Collected sample {a:z(»t),y(t) i, from the t-th task, t =1: 7T, and

7
= @B 4, i=1:n,

i

where 3% = A*9()" | A* ¢ RP*" with (A*)TA* = I,«,, 0" € R".
o Theory was studied in Du et al. (2020); Tripuraneni et al. (2021)
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A theoretical formulation

o Collected sample {acz(t),y(t) ®, from the t-th task, t =1: 7T, and

O = @0+ 0, =10,

where B0* = A*9()* | A* ¢ RP*" with (A*)TA* = I,,, 01" € R".
o Theory was studied in Du et al. (2020); Tripuraneni et al. (2021)
o Questions:

> What if the representations are NOT the same?
> Qutlier tasks?
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A theoretical formulation

[e]

Collected sample {acz(t),y(t) ®, from the t-th task, t =1: 7T, and

O = @0+ 0, =10,

where 3)* = A*9()* A* € RP*" with (A")T A* = I, 0" € R".
Theory was studied in Du et al. (2020); Tripuraneni et al. (2021)
Questions:

> What if the representations are NOT the same?
> Qutlier tasks?

We suppose 35 C [T], 81 = AD*9()* with

o

[e)

o

min max || A®*(A®T — A(A)T|, < h.

A teSs

Sample {mz ,y( Jyn 1 from t € S¢ = [T]\S can be arbitrarily

7
distributed. = Outller tasks
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Different paradigms of MTL and TL

B { B
,3(2)* '-
BE* B
BW*
,3(4)*
(a) Distance-based similarity [3, 19, 34, 50] (b) Angle-based similarity [25]
BR* = A*9)* B8O~ B = AW+g)*
B = AG) )
ﬁ(l)* = A*g(*
B@* — A*g@) BB = AW+g(
BR* = A*g(2)*
ﬂ(a)* — A*e(a)*

(c) The same representation [18, 52] (d) Similar representations with outliers (ours)

Ye Tian Introduction 5/16



Problem review + algorithm

o Problem: Collected sample {wgt),ygt)}le from the t-th task, t =1:T.
> 38 C [T], BW* = AW+ AW+ ¢ RPXT with
A(z‘)*(A(f)*)T =TI,y
yz-(t) = (azz(.t))T,@(t)* +e i=1:n, tes.

> Sample {mgt),yft)}?zl from t € S¢ = [T]\\S can be arbitrarily
distributed.
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Problem review + algorithm

o Problem: Collected sample {a:,L ,y( n , from the ¢-th task, t =1:T.

(2
> 35 C [T], BW* = AWp)+ Al by € RPX7 with
A(z‘)*(A(t)*)T =TI,y

yi(t) (x t))Tﬂt)* i), t=1:n, teb.

> Sample {xz(t)7y§t) n_, from ¢t € S¢ = [T]\S can be arbitrarily
distributed.

o Two-step algorithm: \ < /r(p+logT), v =< /p+logT
> A\() 7108 j <+ Minimize
Z " E[ 2)T AV + | AD(AD)T — A(A)T 2
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Problem review + algorithm

o Problem: Collected sample {w,gt),ygt)};‘zl from the t-th task, t =1:T.
> 35 C [T], BH* = A9+ A+ ¢ RPXT with
A(z‘)*(A(t)*)T =TI,y

yi(t) (x t))Tﬂt)* i), t=1:n, teb.

> Sample {:cgt)7y§ ) n_, from ¢t € S¢ = [T]\S can be arbitrarily
distributed.

o Two-step algorlthm A= /r(p+logT), v =< +p+logT
> AW 91, A « Minimize

F Ll @ 0)TAOOOP 4 S A0 - A(A)Ts
> B M|n|mize

LY - @O)TBO2 4 |80 — A0g0],

>'|:|‘.M>ﬂ
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Upper bounds

Assumptions:
®) ®)

°ox;, sub-Gaussian

[e]

maxes |02 < O < o0
(Task diversity) Denote B = (,B(t)*)px|5|. Require 0,.(B%) 2 1//r.

(Not too many outlier tasks) € :== % < 32

o

[e)
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Upper bounds

Assumptions:

° mgt), el(t) sub-Gaussian

o maxes [0z < C < o0
o (Task diversity) Denote B = (,B(t)*)px|5|. Require 0,.(B%) 2 1//r.

o (Not too many outlier tasks) € := % < 32

Upper bounds: Let n 2> /p + logT.
o Vte S, w.p. 1—o(1),

—~ . + logT + logT
||,6(t)—,3(t) 2 < < /"T + \/_h +r '#4_ )/\1/%
%,_/ [ —

A(')*not equal R -
learn A (t)* learn (%) * single-task rate

o If tasks in S¢ also follow linear model: V¢t € S¢, w.p. 1 —o(1),

=~ " + logT
1B =B [l> £ /725
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Lower bounds

Upper bounds: Let n 2 /p +logT.
o w.p. 1 —o(1),

> * +logT +logT
max |8 - ||25<,/ [ )m/”—n‘)g

o If tasks in S¢ also follow the linear model: w.p. 1 —o(1),

* +10 T
max B4 — 8O, < /B E2
te(T] n

Lower bounds:
o w.p. > 1/10,

—~ N [ pr Ir+logT / logT
maX”ﬁ(t) _ﬁ(t) 2 > ( pr Tha r + log + ) A p + log .
tes nT n n

o If tasks in S¢ also follow the linear model: w.p. > 1/10,

* +10 T
max |3 — By 2 /228
te(T) n
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Adaptation to unknown intrinsic dimension r

o Qur algorithm requires r to be known in priori
> AW e RPX" 1) ¢ R
> A< \/r(p+logT)
o Most prior works assume 7 is known: Ando et al. (2005); Chua et al.

(2021); Collins et al. (2021); Du et al. (2020); Duan and Wang (2022);
Duchi et al. (2022); Maurer et al. (2016); Tripuraneni et al. (2021)...
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o Fact: When A®)* = A* we have B = (B(t)*)tem = A} Orxr
Hence o;(B*) = 0 for ¢ > r + 1!
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o Fact: When A®)* = A* we have B = (B(t)*)tem = A} Orxr
Hence o;(B*) = 0 for ¢ > r + 1!

o Thresholding should work when h and outlier proportion € are small
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o Fact: When A®)* = A* we have B = (B(t)*)tem = A} Orxr
Hence o;(B*) = 0 for ¢ > r + 1!
o Thresholding should work when h and outlier proportion € are small

o What happens if h or € is large?
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Adaptation to unknown intrinsic dimension r

o QOur algorithm requires r to be known in priori
> AW e RPX" 1) ¢ R
> A< \/r(p+logT)
o Most prior works assume 7 is known: Ando et al. (2005); Chua et al.

(2021); Collins et al. (2021); Du et al. (2020); Duan and Wang (2022);
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o Fact: When A®)* = A* we have B = (B(t)*)tem = A} Orxr
Hence o;(B*) = 0 for ¢ > r + 1!
o Thresholding should work when h and outlier proportion € are small

o What happens if h or € is large? — No need to estimate r well
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Adaptation to unknown intrinsic dimension r

A simulation example: p =6, r =3

o Under almost the same conditions, we can consistently estimate r

when h < /28T and ¢ < pm3/2

o Plug the estimated r into the previous algorithm
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Simulation 1: No outlier tasks
T = 6 tasks, n = 100, p = 20, » = 3, no outlier task
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Algorithm <@ RL-MTL-oracle -@- RL-MTL-adaptive <@ RL-MTL-naive ~@- Single-task linear regression
Estimation error max;e(r |81 — B1*||;
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Simulation 2: With outlier tasks
T =7 tasks (1 outlier task), n = 100, p = 20, r = 3
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Algorithm -®- RL-MTL-oracle -@- RL-MTL-adaptive -@- RL-MTL-naive -®- Single-task linear regression
. . = E
Estimation error max;eg || — B1* ||,
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Simulation 2: With outlier tasks
T =7 tasks (1 outlier task), n = 100, p = 20, r = 3
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Algorithm -®- RL-MTL-oracle -@- RL-MTL-adaptive -@- RL-MTL-naive -®- Single-task linear regression
Estimation error maxcge [|B3® — B1H*|
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Take-away

o Always freezing representations across tasks can lead to negative transfer

o We proposed an algorithm to learn from similar linear representations
with outlier tasks, which

> is adaptive to unknown similarity level h and intrinsic dimension r
> is minimax optimal in a large regime
> is robust to a small fraction (~ r~3/2) of outlier tasks

o Qur paper on arXiv:

Tian, Y., Gu, Y., & Feng, Y. (2023). Learning from Similar Linear
Representations: Adaptivity, Minimaxity, and Robustness. arXiv preprint
arXiv:2303.17765.

Thanks!
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