Lambert Group

Columbia University

 

 

Catalysis logo

Reaction Design | Synthesis

     

HOME

TRISTAN

MEMBERS

RESEARCH

NEWS

PHOTOS

Research Description

Research in the Lambert group is focused in the area of catalysis.  We are especially interested in the development of novel catalytic strategies for selective organic synthesis. Projects that we have been active in include dehydrative reactions, enantioselective Bronsted base catalysis, and carbonyl-olefin metathesis.  In approaching these and other problems, we strive to develop highly effective practical solutions while asking interesting questions of reactivity and mechanism.  We bring both synthetic and physical organic techniques to bear on answering these questions as we work to develop catalyst systems of practical value for the field of organic synthesis.

 

Publications

Cross-coupling of Sulfonic Acid Derivatives via Aryl Radical Transfer (ART) using TTMSS or Photoredox. Nacsa, E. D; Lambert, T. H. Org. Chem. Front. 2017, advance article.

Houk

 

Methods for the Synthesis of Functionalized Pentacarboxycyclopentadienes. Gheewala, C. D.; Radtke, A. M.; Hui, J.; Hon, A. B.; Lambert, T. H. Org. Lett. 2017, 19, 4227-4230.

Houk

Stimulated Raman Scattering of Polymer Nanoparticles for Multiplexed Live-Cell Imaging. Hu, F.; Brucks, S. D.; Lambert, T. H.; Campos, L. M.; Min, W. Chem. Commun. 2017, 53, 6187-6190.

Houk

 

Influence of Substituent Chain Branching on the Transfection Efficacy of Cyclopropenium-Based Polymers. Brucks, S. D.; Freyer, J. L.; Lambert, T. H.; Campos, L. M. Polymers 2017, 9, 79-87.

Houk

 

Clickable Poly(ionic liquids): A Materials Platform for Transfection. Freyer, J. L.; Brucks, S. D.; Gobieski, G. S.; Russell, S. T.; Yozwiak, C. E.; Sun, M.; Chen. Z.; Jiang, Y.; Bandar, J. S.; Stockwell, B. R.; Lambert, T. H.; Campos, L. M. Angew. Chem. Int. Ed. 2016, 55, 12382-12386 .

Houk

 

Macrosteres: The Deltic Guanidinium Ion. Mishiro, K.; Hu, F.; Paley, D. W.; Min, W.; Lambert, T. H. Eur. J. Org. Chem. 2016, 1655-1659.

Houk

 

An Aromatic Ion Platform for Enantioselective Brønsted Acid Catalysis. Gheewala, C. D.; Collins, B. E.; Lambert, T. H. Science 2016, 351, 961-965.

Featured in C&EN, 2016, 94, issue 9, p. 12.

Houk

 

Cyclopropenimine Superbases: Competitive Initiation Processes in Lactide Polymerization. Stukenbroeker, T. S.; Bandar, J. S.; Zhang, X.; Lambert, T. H.; Waymouth, R. M. ACS Macro Lett. 2015, 4, 853-856.

Houk

 

Higher-Order Cyclopropenimine Superbases. Direct Neutral Brønsted Base Catalyzed Michael Reactions with α-Aryl Esters. Nacsa, E. D.; Lambert, T. H. J.Am. Chem. Soc. 2015, 137, 10246-10253.

Houk

 

Phase-Transfer and Other Types of Catalysis with Cyclopropenium Ions. Bandar, J. S.; Tanaset, A.; Lambert, T. H. Chem. Eur. J. 2015, 21, 7365-7368 .

Houk

 

The Evolution of Cyclopropenium Ions into Functional Polyelectrolytes. Jiang, Y.; Freyer, J. L.; Cotanda, P.; Brucks, S. D.; Killops, K. L.; Bandar, J. S.; Torsitano, C.; Balsara, N. P.; Lambert, T. H.; Campos, L. M. Nature Comm. 2015, DOI: 10.1038/ncomms6950.

Houk

Structure-Activity Relationship Studies of Cyclopropenimines as Enantioselective Bronsted Base Catalysts. Bandar, J. S.; Barthelme, A. P.; Mazori, A. Y.; Lambert, T. H. Chem. Sci. 2015, 6, 1537-1547.

Houk

2,3-Diazabicyclo[2.2.1]heptane. Griffith, A. K.; Lambert, T. H. Encyclopedia of Reagent for Organic Synthesis. 2014.

 

 

Transition State Analysis of Enantioselective Brønsted Base Catalysis by Chiral Cyclopropenimines. Bandar, J. S.; Sauer, G. S.; Wulff, W. D.; Lambert, T. H.; Vetticatt, M. J. J. Am. Chem. Soc. 2014, 136, 10700-10707.

Houk

 

Synthesis and Characterization of a Diaziridinium Ion. Conversion of 3,4-Dihydroisoquinolines to 4,5-Dihydro-3H-benzo[2,3]diazepines via a formal N-Insertion Process. Allen, J. M.; Lambert, T. H. Tetrahedron 2014, 70, 4111-4117. This article is part of a special Symposium-in-Print issue in honor of Prof. Sarah Reisman winning the Tetrahedron Young Investigator Award.

Houk

The Development of Catalytic Nucleophilic Substitution Reactions: Challenges, Progress, and Future Directions. An, J.; Denton, R. M.; Lambert, T. H.; Nacsa, E. Org. Biomol. Chem. 2014, 12, 2993.

Houk

Distortion-Accelerated Cycloadditions and Strain-Release-Promoted Cycloreversions in the Organocatalytic Carbonyl-Olefin Metathesis. Hong, X.; Liang, Y.; Griffith, A. K.; Lambert, T. H.; Houk, K. N. Chem. Sci. 2014, 5, 471-475 .

Houk

Cyclopropenimine-Catalyzed Enantioselective Mannich Reactions of t-Butyl Glycinates with N-Boc-Imines. Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. 2013, 135, 11799-11802.

multicatalysis

 

Aminocyclopropenium Ions: Synthesis, Properties, and Applications. Bandar, J. S.; Lambert, T. H. Synthesis, 2013, 45, 2485-2498.

multicatalysis

Cyclopropenone Catalyzed Substitution of Alcohols with Mesylate Ion. Nacsa, E. D.; Lambert, T. H. Org. Lett. 2013, 15, 38-41 .

multicatalysis

 

Diphenylcyclopropenone. Nacsa, E. D.; Lambert, T. H. Encyclopedia of Reagents for Organic Synthesis 2013. (DOI: 10.1002/047084289X.rn01532).

 

Organocatalytic Carbonyl-Olefin Metathesis. Griffith, A. K.; Vanos, C. M.; Lambert, T. H. J. Am. Chem. Soc. 2012, 134, 18581-18584. Highlighted in Angew. Chem. Int. Ed. 2013, 52, 4524.

multicatalysis

Enantioselective Brønsted Base Catalysis with Chiral Cyclopropenimines. Bandar, J. S.; Lambert, T. H. J. Am. Chem. Soc. 2012, 134, 5552-5555. Featured in C&EN, April 2, 2012.

multicatalysis

Development of a Catalytic Platform for Nucleophilic Substitution: Cyclopropenone Catalyzed Chlorodehydration of Alcohols. Vanos, C. M.; Lambert, T. H. Angew. Chem. Int. Ed. 2011, 50, 12222-12226.

multicatalysis

Demonstration of the Facile Reversibility of Fulvene Formation. Bandar, J. S.; Coscia, R. W.; Lambert, T. H. Tetrahedron, 2011, 67, 4364-4370. This article is part of a special Symposium-in-Print issue in honor of Prof. Dean Toste winning the Tetrahedron Young Investigator Award.

multicatalysis

Cyclopropenium-Activated Cyclodehydration of Diols. Kelly, B. D.; Lambert, T. H. Org. Lett., 2011, 13, 740-743.

multicatalysis

Tropylium Ion Mediated α-Cyanation of Amines. Allen, J. M.; Lambert, T. H. J. Am. Chem. Soc., 2011, 133, 1260-1262.

multicatalysis

Cyclopropenium-Activated Beckmann Rearrangement. Catalysis Versus Self-Propagation in Reported Organocatalytic Beckmann Rearrangements. Vanos, C. M.; Lambert, T. H. Chemical Science, 2010, 1, 705-708.

multicatalysis

Multicatalysis: Advancing Synthetic Efficiency and Inspiring Discovery. Ambrosini, L. M.; Lambert, T. H. Chem. Cat. Chem. 2010, 2, 1373-1380.

multicatalysis

Nucleophilic Acyl Subsitution via Aromatic Cation Activation of Carboxylic Acids: Rapid Generation of Acid Chlorides Under Mild Conditions. Hardee, D. J.; Kovalchuke, L.; Lambert, T. H. J. Am. Chem. Soc. 2010, 132, 5002-5003.

cyclopropanation

Total Synthesis of the Tylophora Alkaloids Rusplinone, 13aa-Secoantofine, and Antofine using a Multicatalytic Oxidative Aminochlorocarbonylation / Friedel-Crafts Reaction. Ambrosini, L. A.; Cernak, T. A.; Lambert, T. H. Tetrahedron 2010, 66, 4882-4887. This article was published as part of a special Symposium-in-Print issue in honor of Prof. Brian Stoltz winning the Tetrahedron Young Investigator Award.

cyclopropanation

Development of Oxidative Formylation and Ketonylation Reactions. Ambrosini, L. A.; Cernak, T. A.; Lambert, T. H. Synthesis--Featured Article 2010, 870-881.

cyclopropanation

Aromatic Cation Activation of Alcohols: Conversion to Alkyl Chlorides Using Dichlorodiphenylcyclopropene. Kelly, B. D.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 13930-13931.

cyclopropanation

Leaving Group Potential of a Substituted Cyclopentadienyl Anion Towards Oxidative Addition. Fisher, E. L; Lambert, T. H. Org. Lett 2009, 11, 4108-4110.

Lanthanum(III) Triflate-Catalyzed Cyclopropanation via Intramolecular Methylene Transfer. Hardee, D. J.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 7536-7537.

cyclopropanation

Multicatalytic Synthesis of Complex Tetrahydrofurans Involving Bismuth(III) Triflate-Catalyzed Intramolecular Hydroalkoxylation of Unactivated Olefins. Kelly, B. D.; Allen, J. M.; Tundel, R. E.; Lambert, T. H. Org. Lett. 2009, 11, 1381-1383.

Multicatalytic Synthesis of a-Pyrrolidinyl Ketones via a Tandem Palladium(II)/In(III)-Catalyzed Aminochlorocarbonylation/Friedel-Crafts Acylation Reaction. Cernak, T. A.; Lambert T. H. J. Am. Chem. Soc. 2009, 131, 3124-3125.

Development of a Formal [4+1] Cycloaddition: Pd(OAc)2-Catalyzed Intramolecular Cyclopropanation of 1,3-Dienyl b-Keto Esters and MgI2-Promoted Vinylcyclopropane-Cyclopentene Rearrangement. Coscia, R. W.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 2496-2498.

TRISTAN H. LAMBERT Department of Chemistry, Columbia University 3000 Broadway New York, NY 10027 TL2240@COLUMBIA.EDU 212.854.1438..