Martina Lessio

Email: ml4132-at-columbia-dot-edu

Research Interests

Education

Research and Work Experiences

Honors and Awards

Publications

  1. A. M. Ferrari, M. Lessio, D. Szieberth, L. Maschio , On the Stability of Dititanate Nanotubes: A Density Functional Theory Study . J. Phys. Chem. C114, 21219-21225 (2010).
  2. A. M. Ferrari, M. Lessio, Michel Rérat, Prediction of Electronic (Hyper)polarizabilities of Titania Nanotubes: A DFT Periodic Study . Comput. Mater. Sci. 280-286 (2013).
  3. E. Balantseva, G. Berlier, B. Camino, M. Lessio, A. M. Ferrari, Surface Properties of ZnS Nanoparticles: A Combined DFT and Experimental Study. J. Phys. Chem. C 118, 23853-23862 (2014).
  4. J. A. Keith, A. B. Muñoz-García, M. Lessio, E. A. Carter, Cluster Models for Studying CO2 Reduction on Semiconductor Photoelectrodes. Top. Catal. 58, 46-56 (2015).
  5. C. X. Kronawitter, M. Lessio, P. Zhao, C. Riplinger, J. A. Boscoboinik, D. Starr, P. Sutter, E. A. Carter, and B. E. Koel, Observation of Surface-Bound Negatively Charged Hydride and Hydroxide on GaP(110) in H2O Environments. J. Phys. Chem. C 119, 17762-17772 (2015).
  6. M. Lessio, E. A. Carter, What Is the Role of Pyridinium in Pyridine-Catalyzed CO2 Reduction on p-GaP Photocathodes. J. Am. Chem. Soc. 137, 13248-13251 (2015).
  7. C. X. Kronawitter, M. Lessio, P. Zahl, A. B. Muñoz-García, P. Sutter, E. A. Carter, B. E. Koel, Orbital-Resolved Imaging of the Adsorbed State of Pyridine on GaP(110) Identifies Sites Susceptible to Nucleophilic Attack. J. Phys. Chem. C 119, 28917-28924 (2015).
  8. N. Alidoust, M. Lessio, and E. A. Carter, Cobalt (II) Oxide and Nickel (II) Oxide Alloys as Potential Intermediate-Band Semiconductors: A Theoretical Study. J. Appl. Phys. 119, 025102 (2016).
  9. T. P. Senftle, M. Lessio, E. A. Carter, Interaction of Pyridine and Water with the Reconstructed Surfaces of GaP(111) and CdTe(111) Photoelectrodes: Implications for CO2 Reduction. Chem. Mater. 28, 5799-5810 (2016).
  10. M. Lessio, T. P. Senftle, E. A. Carter, Is the Surface Playing a Role during Pyridine-Catalyzed CO2 Reduction on p-GaP Photoelectrodes?. ACS En. Lett. 1, 464-468 (2016).
  11. M. Lessio, C. Riplinger, E. A. Carter, Stability of Surface Protons in Pyridine-Catalyzed CO2 Reduction at p-GaP Photoelectrodes. Phys. Chem. Chem. Phys. 18, 26436-26443 (2016).
  12. M. Lessio, J. M. Dieterich, E. A. Carter, Hydride Transfer at the GaP(110)/Solution Interface: Mechanistic Implications for CO2 Reduction Catalyzed by Pyridine. J. Phys. Chem. C 121, 17321–17331 (2017).
  13. T. P. Senftle, M. Lessio, E. A. Carter, The Role of Surface-Bound Dihydropyridine Analogs in Pyridine-Catalyzed CO2 Reduction over Semiconductor Photoelectrodes. ACS Cent. Sci. 3, 968–974 (2017).
  14. M. L. Clark, P. L. Cheung, M.Lessio, E. A. Carter, C.P. Kubiak , Kinetic and Mechanistic Effects of Bipyridine (bpy) Substituent, Labile Ligand, and Brønsted Acid on Electrocatalytic CO2 Reduction by Re(bpy) Complexes. ACS Catal. 8, 2021-2029 (2018).
  15. M. Lessio, T. P. Senftle, E. A. Carter , Hydride Shuttle Formation and Reaction with CO2 on GaP(110). ChemSusChem 1, 1558-1566 (2018).

Teaching and Mentoring Experiences