Home   /   Research

Papers


2024


  • Towards the Theory of Unsupervised Federated Learning: Non-asymptotic Analysis of Federated EM Algorithms
  • Ye Tian, Haolei Weng, Yang Feng
    Preprint: arXiv: 2310.15330 (just accepted at ICML 2024)
    [PDF]


  • Federated Transfer Learning with Differential Privacy
  • Mengchu Li, Ye Tian, Yang Feng, Yi Yu
    Preprint: arXiv: 2403.11343
    [PDF]


    2023


  • Comments on: Statistical inference and large-scale multiple testing for high-dimensional regression models
  • Ye Tian, Yang Feng
    Test, 32(4), 1172-1176.
    [PDF]


  • Learning from Similar Linear Representations: Adaptivity, Minimaxity, and Robustness
  • Ye Tian, Yuqi Gu, Yang Feng
    Preprint: arXiv: 2303.17765
    [PDF] [code]


  • L1-penalized Multinomial Regression: Estimation, inference, and prediction, with an application to risk factor identification for different dementia subtypes
  • Ye Tian, Henry Rusinek, Arjun V. Masurkar, Yang Feng
    Preprint: arXiv: 2302.02310
    [PDF] [R package]


    2022


  • Unsupervised Multi-task and Transfer Learning on Gaussian Mixture Models
  • Ye Tian, Haolei Weng, Yang Feng
    Preprint: arXiv: 2209.15224
    [Winned the student travel award at ICSDS 2022]
    [PDF] [R package]


  • Transfer Learning under Generalized Linear Models
  • Ye Tian, Yang Feng
    Journal of the American Statistical Association (2022): 1-30
    [PDF] [R package]



    2021


  • Neyman-Pearson Multi-class Classification via Cost-sensitive Learning
  • Ye Tian, Yang Feng
    Preprint: arXiv: 2111.04597
    [PDF] [R package]


  • RaSE: A Variable Screening Framework via Random Subspace Ensembles
  • Ye Tian, Yang Feng
    Journal of the American Statistical Association (2021): 1-12
    [PDF] [R package] [R code]


  • A Multilayer Correlated Topic Model
  • Ye Tian
    Preprint: arXiv:2101.02028
    [PDF]


  • RaSE: Random Subspace Ensemble Classification
  • Ye Tian, Yang Feng
    Journal of Machine Learning Research, 22(45), 1-93
    [PDF] [R package]



    2019


  • THORS: An Efficient Approach for Making Classifiers Cost-Sensitive
  • Ye Tian, Weiping Zhang
    IEEE Access, 7, 97704-97718.
    [PDF]


    Selected Project Description

    To be added