The Great Commandment, Tao, and the Survival of Humanity

Nicholas Beale and Robert Pollack.

to appear October 2010 in Union Seminary Quarterly Review

But why should the species be preserved? ... Stepping outside the Tao, they have stepped into the void. (Lewis 1947, 77)

At present humans appear wildly successful in evolutionary terms: with a mass comparable to the other primates we have an abundance comparable to insects. But this success is entangled with a paradox: Evolutionary success is traditionally seen as based on fierce competition, yet our current success is unsustainable without unprecedented levels of cooperation. A partial resolution of this paradox comes from realising that cooperation is a fundamental principle of biology, and indeed from our earliest primate ancestors, our biological origins lie in the emergence of the most complex and long-lived cooperative behaviours among extended families; without these levels of cooperation the success of humankind would have been impossible. It is also significant that a number of major world religions attach great importance to widely-directed love, compassion and respect for Creation, and that religion has historically been a substantial factor in widespread cooperation. So, we must now find out – quickly – whether the biological gift of a habit of cooperativeness, aided and abetted by religious or other underpinnings, will also be sufficient to save us as a species from the future consequences of our current success.

The need for cooperation of which we speak operates at several levels. The idea that scientific progress would inevitably lead to peaceful coexistence was tested in the 20th Century, and, in the memorable phrase of Roy Enquist, “the laboratory, as we now know, turned out to be an abattoir” (Enquist 2009, 76). From at least the time of Archimedes, technological and scientific progress have been intimately linked with warfare. This reached an apotheosis with the development of nuclear weapons, which gave human beings for the first time a technology capable of substantially destroying the biosphere and making the continued survival of humanity decidedly questionable. It used to be asserted that a full-scale nuclear war might eliminate life on earth. However what we now know about extremophiles makes this seem highly unlikely. Indeed many forms of insect might well survive a large-scale nuclear exchange.1 Equally this is presumably the second, rather than the first, time that humanity has had the capability for self-extinction: when there were only one or two tribes of Homo sapiens an axe or poor choices of drinking water might have done the trick. It is also a sobering thought

1 c/f (Flanders 1964): “The Brontosaurus had a brain no bigger than a crisp. The Dodo had a stammer and the Mammoth had a lisp. The Auk was just too awkward, now they’re none of them alive. Each one, like ... Man, had shown himself unfit to survive. Their story points a moral, now it’s we who wear the pants; The extinction of these species holds a lesson for us ... Ants.”

What this lacks in biological accuracy it makes up in comic poignancy. (Flanders and Swann 1961) and (Flanders and Swann 1964) are also highly pointed warnings of the dangers of a nuclear holocaust.
that current evidence suggests that until about 20 KYA our primate ancestors were never alone, but always were in an ecological relationship with at least one other hominid species. It is unclear whether Homo sapiens killed off all the others or simply outlived them. Fortunately for humanity, there has so far been sufficient cooperation between the major nuclear powers to avoid a conflagration, although estimates of the probability of a disaster during the “Cold War” are alarmingly high².

Other military technologies may conceivably confer the power of what we might term Military Humanicide on some subset of humanity. But there are further potential sources of catastrophe. Widespread international travel sadly makes global epidemics feasible. So far nothing has exceeded the devastation of HIV/AIDS, and it is sobering to consider how many millions of people had to change their behaviour in order to contain this epidemic, both in terms of sexual practices and in terms of unprecedented behaviour by pharmaceutical companies, as well as the devastating consequences it has wreaked in many countries especially in Africa. It is quite probable that another more devastating epidemic will arise in the next 10-50 years, and by no means a foregone conclusion that humanity will cooperate sufficiently to avoid an even worse catastrophe. So “Microbial Humanicide” is, sadly, a real possibility. Then there is a cluster of environmental threats of which global climate change may be taken as a paradigm. Without going into the details, which are still uncertain, of exactly how bad the effects of human impacts on climate change will be, it is clear at least that a sufficient level of human irresponsibility could have devastating effects on the biosphere (McCarthy 2009, Weitzman 2009, Kousky et. al. 2009), so that “Environmental Humanicide” is a serious issue. For completeness we can add two more clusters of problems, which we might call “Logistical Humanicide” precipitated by a major global breakdown of the increasingly sophisticated logistics (both physical and IT) on which humanity depends, and “Astronomical Humanicide” whereby some event such as a major meteor strike has devastating consequences.

There are two common aspects of all of these, on which we want to focus attention. Firstly, with the exception of the Astronomical, all of these potential humanicides could be caused or seriously exacerbated by human behaviour. Secondly avoiding of any of these requires a substantial degree of “cooperation” involving people forgoing a present (apparent) benefit to avoid a serious medium- or long-term harm.

Until around 1960 none of these situations really existed: Nuclear arsenals were a few megatons, there was probably insufficient large-scale global travel for a prospect of Microbial Humanicide, and although Astronomical Humanicide has been a constant risk, there was until recently nothing humanity could do about it. The first feasible Humanicide, Military Humanicide, had, at least at the beginning, three characteristics that in a paradoxical way can be seen as highly desirable. The first is that restraint was required from only a very small number of human beings to avoid this disaster³. In principle, so long as the Presidents (or equivalent) of the USA and the USSR refrained from “pushing the button” nuclear holocaust could be avoided. And although this might be a source of weakness, because one of them could have become deranged, in practice it seems likely that people around them would have thwarted a deranged intention. The second desirable characteristic was that the disaster unleashed was very obvious and immediate. Launch a nuclear strike today and within a week your major cities would be destroyed. The third desirable characteristic was that the (apparent) benefits from

² Martin Rees suggests that the risk was “substantially higher than one in six” (Rees 2003, 28)

³ Whether it was really true that a President or Prime Minister could have initiated a nuclear exchange by “pressing the button” on a whim is discussed amusingly in (Jay and Lynn 1986).
launching a strike were very small. Villains in Bond movies may seek “Global Domination” but in practice large Empires are ungovernable and have to be relinquished sooner or later, as the British and Russians discovered in the 20th Century.

Compare these characteristics with HIV/AIDS or global climate change. Both restraint and cooperation are required from a large number of people: broadly speaking anyone who is sexually active with more than one partner and anyone who is economically active respectively. The time-delay between the deleterious behaviour and a visible catastrophe is typically 5-15 years for HIV/AIDS and perhaps 30-100 years from climate change; the apparent benefits, sexual gratification and economic growth, are very alluring. Humans are notoriously bad at balancing short-term advantage against long-term disadvantage and even with “full rationality” the correct principles for such balancing are not entirely clear. There is an additional problem that, if we limit our understanding of humanity to Homo economicus, it is difficult to incentivise people after they are dead. A deeper and more nuanced account of human behaviour and motivation is evidently necessary to account for the considerable sacrifices that people do in fact make for the benefit of future generations.

Without wishing to go into an excessive level of spurious quantification, we can see that in about half a century the level of cooperation required to avoid humanicide has gone from zero, through getting fewer than 10 people (less than 0.0000001% of humanity) to forgo a dubious benefit to avoid immediate catastrophic loss, to the present situation where on a 50-year view 10-90% of humanity must cooperate to avoid a catastrophe on a timeframe of decades.

Part of this paradox can be resolved by a reconsideration of the fact that cooperation is also a fundamental principle of biology (Nowak 2006). At every level, life depends on cooperation: the ecosystem, the population, the organism, and the cell. Denis Noble is particularly eloquent about this in The Music of Life (Noble 2006) and subsequent writings (eg Noble 2008). Against the apparently seductive reductionist paradigm popularised by Monod and Crick, Noble offers the view that biological explanations cannot ultimately either be “top down” or “bottom up” but must be “middle out”. And a moment’s reflection makes it clear that the vastly complex and intricate mechanisms of biological cooperation are an essential pre-requisite to the competition that goes on at the edges and which has become the focus of much evolutionary thinking. Without cells, organisms, populations and ecosystems there can be no competition at all. We could adapt Edison’s famous dictum and say that biology is 1% competition, 99% cooperation.

4 see eg (De Martino et al. 2006) and papers that cite this, such as (Mickels & Reed 2009) Paradoxically, it seems plausible that there is a significant evolutionary advantage in having human beings over-discount risk. Given the risks associated with childbirth and fighting for most of evolutionary history, a species composed entirely of Homo economicus would not have survived very long.

5 See the Stern Review on Climate Change, which adopted a 0.1% discount rate on the future costs relating to climate change, and the discussion and criticism of the review on this point, eg (Dasgupta 2006, Weitzman 2007)

6 One of the advantages of the hereditary principle is that it encourages longer-term thinking. Clearly, whatever the reason, caring about the future of your descendants gives a motivation for longer-term thinking. Indeed one aspect of the constitutional debate about monarchies and democracies is that democrats focus on the next election whereas monarchs focus on the next generation. This is not, of course, to say that monarchs necessarily act more wisely than elected leaders, and indeed in most successful monarchies the actual powers of the monarch are carefully limited.
Nevertheless, differences in degree can lead to differences in kind, and as we have argued above the scale and level of cooperation now required to avoid humanicide is unprecedented. It is a sobering thought that one reason why we have not seen any sign of advanced alien civilisations is that the probability of an advanced civilisation surviving for much more than 100 years after they have developed H-Bombs and similar technology may be very low (Beale, 2009).

To reach the required levels of cooperation we need sufficiently widespread agreement between people on how they will act, even if there is a divergence of views on why these actions are needed. These agreements must be both within nation-states and across national boundaries. As Amartya Sen powerfully argues in The Idea of Justice (Sen 2010) one of the serious weaknesses of the social contract approach to thinking about issues of justice is its inability to deal convincingly with issues across generations and across nations. If justice is supposed to derive from a hypothetical social contract that might have been reached by a group of people from an “original position” as Rawls suggests, then what of people who are excluded from this group, either because they are not part of the nation in question or because they are as yet unborn?

These difficulties apply with perhaps even greater force to purely prudential appeals to moral behaviour based on social norms, reciprocity or kin selection7. The idea that people are, or perhaps more bizarrely, should be, motivated mainly by a desire to propagate their genes is one of the more ludicrous misunderstandings of the late 20th Century. Haldane’s dictum (“I will sacrifice my life for two brothers or four cousins”) has a nice mathematical feel to it, but in the light of the 96% similarity between the chimpanzee and human genome a devout follower of this rule would feel compelled to sacrifice himself and his wife for three chimpanzees, and of course for three humans however distantly related since there is even greater genetic similarity. Indeed a sufficient number of Drosophila could be said to contain more “human genes” than a human town. One of the major lessons of the recent discoveries in genetics is that genes really are not remotely as important as people previously supposed (Noble 2008) is very good on this, so is (Jablonka and Lamb 2006).

It is also worth noting in passing that western secularists who claim that “the purpose of life is to propagate genes” tend to have significantly fewer children on average than religious people in similar societies. Graucho Marx’s “why should I care about posterity? What’s posterity ever done for me?” is a question which is very difficult to answer in purely secularist terms (see eg Beer 2008). If life is indeed a largely meaningless epiphenomenon, on an insignificant rock orbiting an ordinary star which will in due course be destroyed, and if there really is nothing but matter/energy then why indeed should we bother?

Public Goods games often lead to depressing conclusions, that players fail to avert a catastrophe by making relatively small sacrifices even when every player knows that, if they don’t show the necessary restraint, they will lose everything (Milinski et al. 2008, Tavoni et al. 2010) . If many or even most of the players believed that they could leave the game with their winnings before the catastrophe occurred, and that the catastrophe would happen to other people, the conclusions would be even more bleak. We think serious research is needed about what we might call Delayed Catastrophe Games, and would welcome collaborators on this.

7 (Nowak et al., 2010) comprehensively demolishes some exaggerated claims about kin selection.
But there is another way of telling the human story. Instead of beginning with matter/energy we can begin with love and wisdom – indeed in the beginning, God. If “rational self interest” in people’s own lifetimes may not lead to the necessary levels of cooperation, how about a worldview based on the primacy of love and wisdom?

As CS Lewis famously pointed out in The Abolition of Man (Lewis 1943, esp 95-121) there is a great deal of agreement between major world religions about the fundamental principles of human behaviour. When Jesus singles out “Love your Neighbour as yourself” as the second great commandment he is of course quoting Leviticus 19:18, and in his parable of the Good Samaritan he implies strongly that this commandment should be interpreted really widely: indeed Leviticus 19:33 already extends this to “aliens”.

Interpreted sufficiently widely, this “ethic of deep reciprocity” potentially contains the seed for the survival of humanity. Why should I restrain my consumption, my sexual behaviour or my greenhouse gas emissions for the benefit of billions of others whom I will never meet? Love your neighbour as yourself. Why should people devote resources to address problems, such as meteor impact, whose devastating consequences are more likely to happen after their death than before it? Love your neighbour as yourself.

Of course love is not a panacea. Love needs to be complemented by wisdom. Consider for example a “universal love”, however sincere, that involved giving everyone nuclear weapons. Many disastrous actions have been taken, at least allegedly, for the best of motives: food aid given in such a way as to undermine the economics of a poor country’s farmers; policies of economic self-sufficiency that condemn hundreds of millions to unnecessary poverty; extending loans to people with no income and no assets so that they can buy houses that they cannot afford, and eventually precipitating a massive financial collapse are just three examples. One essential aspect of scientific discovery is that it allows people to take wiser decisions. The science of the Ozone Layer and climate change both spring to mind. But although scientific knowledge may be an enabler of wisdom, there is more to wisdom than factual information. TS Eliot’s plangent lines: “Where is the wisdom we have lost in knowledge? Where is the knowledge we have lost in information?” (Eliot 1934) become increasingly pertinent as scientific “Progress” deluges us with more and more papers. We cannot, from a scientific point of view, specify what values humans should adopt. But we can observe that certain sets of values will be compatible with continued evolutionary success, whereas other will not. For example it is clear that we need an “ethic of enough” in respect of most material things.

These notions of value go well beyond the domain of science. The emergence in nature 4 BYA of novel positive feedback loops of self-replicating informational molecules, may well be the natural source of life, but cannot of itself provide the values or motivations required. However it is interesting at least to contemplate the possibility that scientific investigation of the conditions necessary to the continued survival and flourishing of humanity may accord with some of the deepest wisdom from religious traditions that have been with us for millennia. It is even possible to imagine this leading to some kind of convergence between the two worldviews (Wilson 2006) based on Matter/energy and Love/cooperation.

References

8 A fuller exploration of the authors’ respective approaches to this are in (Polkinghorne and Beale 2009) and (Pollack 2000).

Flanders, Michael and Donald Swann. 1964. “20 Tons of TNT” in The Extiary London: EMI. Text as above p62

Nowak, Martin, Corina Tarnita, and EO Wilson. 2010. The evolution of eusociality Nature **466**. 1057-1062

Tavoni, Alessandro, Astrid Dannenberg, and Andreas Löschel. 2010. *Coordinating to Protect the Global Climate: Experimental Evidence on the Role of Inequality and Commitment* ZFW Discussion Paper No. 10-049

