Deep Sequencing


Next-generation sequencing (NGS) has become ubiquitous in biomedical research with numerous applications. This course will provide an in-depth introduction to principles of modern sequencing technologies, key computational algorithms and statistical models, and applications in disease genetics, cancer and systems biology. It will cover genome, exome and transcriptome sequencing approaches. Emphasis will be placed on understanding the interplay between experimental design, data acquisition, and data analysis so that students can apply these powerful tools in their own research.

Syllabus for Fall 2022


Yufeng Shen, Peter Sims, and Chaolin Zhang




This course is intended for graduate students or senior undergraduates interested in learning state-of-the-art sequencing approaches and their applications in biological and medical research.

Required: Basic knowledge in molecular biology, probability, and statistics
Preferred: working knowledge of UNIX and a programming language (R, MATLAB, Python, Ruby, or Perl); basic knowledge of genetics.


Class participation: 10%; Journal club: 10%; Mid-term exam: 40%; Final project and presentation: 40%